全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

环状周期结构面外参激振动稳定性分析
Analysis on Out-of-Plane Parametric Vibration Stability of Ring-Shaped Periodic Structures

DOI: 10.11784/tdxbz201710019

Keywords: 环状周期结构,参激振动,特征值,动力稳定性
ring-shaped periodic structure
,parametric vibration,eigenvalue,dynamic stability

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对工程领域广泛应用的一类受移动载荷作用的环状周期结构, 开展了面外参激弹性振动稳定性研究.首先采用Hamilton原理在载荷随动坐标系下建立了时不变动力学模型.然后应用Galerkin方法对其进行离散, 得到常微分动力学模型, 最后通过计算特征值预测了模态特性和动力稳定性.为了验证解析结果的正确性, 应用坐标变换将模型转换至惯性坐标系下, 得到时变动力学模型, 然后采用Floquét理论计算了不稳定域.该研究提供了一种解决移动载荷参激振动问题的有效途径.
This work aims at the out-of-plane parametric elastic vibration of intensively-used ring-shaped periodic structures subjected to moving loads in engineering field. A time-invariant dynamic model was established by using Hamilton principle under the load-fixed coordinates. A set of ordinary differential equations were formulated by Galerkin method. The modal characteristics and the dynamic instability were identified by means of eigenvalue. For the purpose of verification,the model was equivalently transformed into a time-variant version under the inertial frame by introducing a transformation,and the unstable regions were calculated by Floquét theory. The research provides an efficient way to solve the problem of parametric vibration induced by moving loads

References

[1]  Kim W, Chung J. Free non-linear vibration of a rotating thin ring with the in-plane and out-of-plane motions[J]. <i>Journal of Sound and Vibration</i>, 2002, 258(1):167-178.
[2]  Canchi S V, Parker R G. Parametric instability of a circular ring subjected to moving springs[J]. <i>Journal of Sound and Vibration</i>, 2006, 293(1/2):360-379.
[3]  Hu Haiyan. <i>Applied Nonlinear Dynamics</i>[M]. Beijing:Aviation Industry Press, 2000(in Chinese).
[4]  Wang S Y, Sun W J, Wang Y Y. Instantaneous mode contamination and parametric combination instability of spinning cyclically symmetric ring structures with expanding application to planetary gear ring[J]. <i>Journal of Sound and Vibration</i>, 2016, 375:366-385.
[5]  Wang Haiqi. <i>Nonlinear Vibration</i>[M]. Beijing:China Higher Education Press, 1992(in Chinese).
[6]  Zhang D S, Wang S Y. Parametric vibration of split gears induced by time-varying mesh stiffness[J]. <i>Pro-
[7]  </i><i>ceedings of the Institution of Mechanical Engineers</i>, <i>Part C</i>:<i>Journal of Mechanical Engineering Science</i>, 2015, 229(1):18-25.
[8]  周顺荣. 电机学[M]. 北京:科学出版社, 2007.
[9]  Zhou Shunrong. <i>Electric Machinery</i>[M]. Beijing:Science Press, 2007(in Chinese).
[10]  胡海岩. 应用非线性动力学[M]. 北京:航空工业出版社, 2000.
[11]  王海期. 非线性振动[M]. 北京:高等教育出版社, 1992.
[12]  Canchi S V, Parker R G. Parametric instability of a rotating circular ring with moving, time-varying springs [J]. <i>ASME Journal of Vibration and Acoustics</i>, 2006, 128(2):231-243.
[13]  Canchi S V, Parker R G. Effects of ring-planet mesh phasing and contact ratio on the parametric instabilities of a planetary gear ring[J]. <i>ASME Journal of Mechanical Design</i>, 2008, 130(1):014501-014506.
[14]  Wu X H, Parker R G. Vibration of rings on a general elastic foundation[J]. <i>Journal of Sound and Vibration</i>, 2006, 295(1/2):194-213.
[15]  Lesaffre N, Sinou J J, Thouverez F. Stability analysis of rotating beams rubbing on an elastic circular structure [J]. <i>Journal of Sound and Vibration</i>, 2007, 299(4/5):1005-1032.
[16]  Sadeghi M, Hosseinzadeh V A. Parametric excitation of a thin ring under time-varying initial stress:Theoretical and numerical analysis[J]. <i>Nonlinear Dynamics</i>, 2013, 74:733-743.
[17]  Xie B, Wang S Y, Wang Y Y, et al. Magnetically induced rotor vibration in dual-stator permanent magnet motors[J]. <i>Journal of Sound and Vibration</i>, 2015, 347:184-199.
[18]  Xia Y, Wang S Y, Sun W J, et al. Analytical estimation on divergence and flutter vibrations of symmetrical three-phase induction stator via field-synchronous coordinates[J]. <i>Journal of Sound and Vibration</i>, 2017, 386:407-420.
[19]  Zhao Z F, Wang S Y, Yang J M, et al. Parametric instability induced by traveling magnetic load within permanent magnet motors[J]. <i>Nonlinear Dynamics</i>, 2015, 80(1):827-843.
[20]  Iwatsubo T, Sihohata K, Kawamura S, et al. Vibration analysis of an induction motor under electromagnetic force[J]. <i>Transactions of the Japan Society of Mechanical Engineers</i>, 2003, 69(680):939-944.
[21]  Yang B S, Kim Y H, Son B G. Instability and imbalance response of large induction motor rotor by unbalanced magnetic pull[J]. <i>Journal of Vibration and Control</i>, 2004, 10(3):447-460.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133