全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

高环境压力下幂律流体射流液滴粒度特性试验
Experiment on Droplets Size Distribution of the Cylindrical Power-Law Liquid Jet Under High Ambient Pressure

DOI: 10.11784/tdxbz201609025

Keywords: 幂律流体,圆柱射流,粒度,索特平均直径(SMD)
power-law fluid
,cylindrical liquid jet,particle size,Sauter mean diameter(SMD)

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于自行搭建的射流系统和定容燃烧弹系统, 采用三维相位多普勒技术, 实现对幂律流体圆柱射流在封闭空间内不同工况下破碎液滴粒度场分布规律的测量.结果表明, 对于同一种幂律流体, 在相同的喷射压力、环境压力和喷嘴结构参数下, 索特平均直径(SMD)随射流轴向位置的增大而减小; 在同一轴向位置, SMD基本沿径向两侧呈对称分布, 越远离中心SMD越大, 射流速度越大, 这种对称分布现象越明显; 控制其他参数相同, SMD随着射流速度的增大而逐渐变小; 随着环境压力的增大, SMD逐渐减小; 喷嘴其他参数相同, SMD随着喷嘴直径的减小而逐渐减小; 对于不同的幂律流体, 黏度越大, SMD越大.试验结果与不稳定性理论分析所给出的幂律流体射流破碎规律是一致的.
Based on fluid injection system and constant-volume chamber system,3D phase Doppler system was used to obtain the breakup droplets size distribution of a cylindrical power-law liquid jet in an enclosed space under various working conditions. The results indicate that under the same injection pressure,ambient pressure and nozzle structure parameters,Sauter mean diameter(SMD)of the breakup droplets decreases gradually along the jet axis. At the same axial position of the jet,SMD can be observed symmetric along the radial direction,and SMD gets much bigger on the edge of the jet. It is found from the experiments that SMD of the power-law liquid jet decreases with the increase of injection velocity and back pressure,and with the decrease of nozzle diameter. The results also indicate that the viscosities of power-law liquid jet have great effects on the breakup of the jets. It can be concluded that the experimental results agree fairly well with the results given by the instability analysis

References

[1]  Metzner A B, Reed J C. Flow of non-Newtonian fluids-correlation of the laminar, transition, and turbulent-flow regions[J]. <i>AIChE Journal</i>, 1955, 1(4):434-440.
[2]  Ryan N W, Johnson M M. Transistion from laminar to turbulent flow in pipes[J]. <i>AIChE Journal</i>, 1959, 5(4):433-435.
[3]  Yang L J, Fu Q F, Qu Y Y, et al. Spray characteristics of gelled propellants in swirl injectors[J]. <i>Fuel, </i>2012, 97(7):253-261.
[4]  李龙飞, 张蒙正, 杨伟东, 等. 喷嘴形式对幂律型非牛顿推进剂雾化特性的影响[J]. 航空动力学报, 2014, 29(12):2987-2992.
[5]  Du Qing, Ma Yongcui, Bai Fuqiang, et al. Experiment on the breakup characteristics of impinging jets of power-law fluid[J]. <i>Journal of Tianjin University</i>:<i>Science and Technology</i>, 2016, 49(2):158-163(in Chinese).
[6]  常青. 幂律流体射流破碎机理的理论与实验研究[D]. 天津:天津大学机械工程学院, 2014.
[7]  Cho Y I, Hartnett J P. Non-Newtonian fluids in circular pipe flow[J]. <i>Advances in Heat Transfer</i>, 1982, 15:59-141.
[8]  Yang L J, Du M L, Fu Q F, et al. Linear stability analysis of a power-law liquid jet[J]. <i>Atomization and Sprays</i>, 2012, 22(2):123-141.
[9]  Von Kampen J, Ciezki H K, Tiedt T, et al. Some aspects of the atomization behavior of Newtonian and of shear-thinning gelled non-Newtonian fluids with an im-
[10]  pinging jet injector[C]//<i>The</i> 42<i>nd AIAA Joint Propulsion Conference</i>. Sacramento, CA, USA, 2006:1-13.
[11]  Baek G, Kim S, Han J, et al. Atomization characteristics of impinging jets of gel material containing nanoparticles[J]. <i>Journal of Non-Newtonian Fluid Mechanics</i>, 2011, 166(21):1272-1285.
[12]  Gao Z, Ng K. Temporal analysis of power law liquid jets[J]. <i>Computers and Fluids</i>, 2010, 39(5):820-828.
[13]  Lee I, Koo J. Break-up characteristics of gelled propellant simulants with various gelling agent contents[J]. <i>Journal of Thermal Science, </i>2010, 19(6):545-552.
[14]  Dodge D W, Metzner A B. Turbulent flow of non-Newtonian systems[J]. <i>AIChE Journal</i>, 1959, 5(2):189-204.
[15]  Jung K, Yoon Y, Hwang S S. Spray characteristics of impinging jet injectors using imaging techniques [C]//<i>The<i> 36<i>th</i> <i>AIAA Joint Propulsion Conference and Exhibit</i>. Huntsville, AL, USA, 2000.
[16]  Aliseda A, Hopfinger E J, Lasheras J C, et al. Atomization of viscous and non-Newtonian liquids by a coaxial, high-speed gas jet. Experiments and droplet size modeling[J]. <i>International Journal of Multiphase Flow</i>, 2008, 34(2):161-175.
[17]  Li Longfei, Zhang Mengzheng, Yang Weidong, et al. Effects of different injectors on spray characteristics of power-law non-Newtonian propellant[J]. <i>Journal of Aerospace Power</i>, 2014, 29(12):2987-2992(in Chinese).
[18]  杜青, 马永翠, 白富强, 等. 幂律流体撞击式射流破碎特征试验[J]. 天津大学学报:自然科学与工程技术版, 2016, 49(2):158-163.
[19]  Chang Q, Zhang M Z, Bai F Q, et al. Instability analysis of a power law liquid jet[J]. <i>Journal of Non-Newtonian Fluid Mechanics, </i>2013, 198:10-17.
[20]  Chang Qing. Theoretical and Experimental Study on the Breakup Mechanisms of Power-Law Liquid Jets[D]. Tianjin:School of Mechanical Engineering, Tianjin University, 2014(in Chinese).</i></i>

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133