全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

基于改进响应面法的立管疲劳可靠性计算
Calculation on Fatigue Reliability of Riser Based on Improved Response Surface Method

DOI: 10.11784/tdxbz201610090

Keywords: 海洋立管,疲劳可靠性,断裂力学,响应面法,收敛失败
marine riser
,fatigue reliability,fracture mechanics,response surface method,convergence failure

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于现代断裂力学方法建立立管疲劳失效的极限状态函数.应用经典响应面法求解可靠性指标时, 发现迭代过程会出现混沌或数值振荡现象.为避免可靠性指标计算过程中不收敛问题, 引入混沌控制方法改进算法.研究表明改进的响应面法具有较好的适用性和收敛性.基于改进的响应面法重新计算立管的疲劳可靠性指标, 有效解决了迭代不收敛问题, 且计算结果具有较高精度.在此基础上, 分析了随机变量变异系数对立管疲劳可靠性的影响.计算结果显示立管疲劳可靠性随随机变量变异系数的增大而减小, 并且随机变量B变异系数对立管疲劳可靠性的影响最大.
The limit state function of riser fatigue failure was established based on modern fracture mechanics method. When the reliability index was solved by the classical response surface method,the phenomenon of chaos or numerical oscillation occurred in the iterative process. In order to avoid this problem in the calculation of reliability index,the chaos control method was introduced to improve the algorithm. Studies show that the improved response surface method has good applicability and convergence property. Based on the improved response surface method,the fatigue reliability index of the riser was recalculated,and then the problem was solved effectively with high accurate results. Then,this method was used to analyze the influence of the variation coefficient of random variables on fatigue reliability. The fatigue reliability of the marine riser decreases with the increase of variation coefficient of the random variables,and the variation coefficient of the random variable B has the greatest influence

References

[1]  Bucher C G, Bourgund U. A fast and efficient response surface approach for structural reliability problems[J]. <i>Structural Safety</i>, 1990, 7(1):57-66.
[2]  张明, 金峰. 结构可靠度计算[M]. 北京:科学出版社, 2015.
[3]  Hu Yuren, Li Qingdian, Chen Bozhen. <i>Ship and Ocean Engineering Structural Fatigue Reliability Analysis</i>[M]. Harbin:Harbin Engineering University Press, 2010(in Chinese).
[4]  Song C Y, Lee J, Choung J M. Reliability-based design optimization of an FPSO riser support using moving least squares response surface meta-models[J]. <i>Ocean Engineering</i>, 2011, 38(2/3):304-318.
[5]  Wang G R, Chu F, Tao S Y, et al. Optimization design for throttle valve of managed pressure drilling based on CFD erosion simulation and response surface methodology[J]. <i>Wear</i>, 2015, 338/339(5):114-121.
[6]  闫宏生, 余建星, 胡云昌, 等. 大型结构系统可靠性分析方法研究[J]. 船舶力学, 2007, 11(3):444-452.
[7]  Yan Hongsheng, Yu Jianxing, Hu Yunchang, et al. System reliability analysis of large-scale offshore platform based on neural network response surface and ductile limit theory[J]. <i>Journal of Ship Mechanics</i>, 2007, 11(3):444-452(in Chinese).
[8]  Leira B J, Holm?s T, Herfjord K. Application of response surfaces for reliability analysis of marine structures[J]. <i>Reliability Engineering and System Safety</i>, 2005, 90(2):131-139.
[9]  李松超. 基于改进响应面法的飞机结构可靠性分析[D]. 沈阳:沈阳航空航天大学航空航天工程学院, 2012.
[10]  Li Songchao. Aircraft Structural Reliability Analysis Based on Improved Response Surface Method[D]. Shenyang:School of Aerospace Engineering, Shenyang Aerospace University, 2012(in Chinese).
[11]  丁幼亮, 李爱群, 姚晓征, 等. 结构可靠度响应面法的混沌动力学分析及其改进方法研究[J]. 应用力学学报, 2009, 26(1):66-70.
[12]  Meng Guangzhe, Wang Lijun. A study of correlation between <i>C</i> and <i>m</i> in fatigue crack propagation law d<i>a</i>/d<i>N</i>=<i>C</i>(Δ<i>K</i>)<i><sup>m</sup></i>[J]. <i>Journal of Tianjin University</i>, 1989(3):18-24(in Chinese).
[13]  杨迪雄. 结构可靠度分析FORM迭代算法的混沌控制[J]. 力学学报, 2007, 39(5):647-654.
[14]  Yang Dixiong. Chaos control of FORM iterative in structural reliability analysis[J]. <i>Chinese Journal of Theoretical and Applied Mechanics</i>, 2007, 39(5):647-654(in Chinese).
[15]  侯涛. 海洋立管在波浪载荷作用下的疲劳可靠性分析[D]. 天津:天津大学建筑工程学院, 2003.
[16]  Hou Tao. Fatigue Reliability Analysis of Marine Riser Under Wave Load[D]. Tianjin:School of Civil Engineering, Tianjin University, 2003(in Chinese).</i></i>
[17]  余建星, 傅明炀, 杨怿, 等. 海底管道涡激振动疲劳可靠性分析[J]. 天津大学学报, 2008, 41(11):1321-1325.
[18]  Yu Jianxing, Fu Mingyang, Yang Yi, et al. Fatigue reliability analysis of vortex-induced vibration of submarine pipeline span[J]. <i>Journal of Tianjin University</i>, 2008, 41(11):1321-1325(in Chinese).
[19]  胡毓仁, 李庆典, 陈伯真. 船舶与海洋工程结构疲劳可靠性分析[M]. 哈尔滨:哈尔滨工程大学出版社, 2010.
[20]  Yu Jianxing, Guo Shuai, Yu Yang, et al. Effects of crack parameters on fatigue life of subsea pipelines[J]. <i>Journal of Tianjin University</i>:<i>Science and Technology</i>, 2016, 49(9):889-895(in Chinese).
[21]  金伟良, 付勇, 赵冬岩, 等. 具有裂纹损伤的海底管道断裂及疲劳评估[J]. 海洋工程, 2005, 23(3):7-16.
[22]  白勇, 李小森, 孙丽萍, 等. 海洋立管设计[M]. 哈尔滨:哈尔滨工程大学出版社, 2014.
[23]  Bai Yong, Li Xiaosen, Sun Liping, et al. <i>Marine Riser Design</i>[M]. Harbin:Harbin Engineering University Press, 2014(in Chinese).
[24]  陈承皓, 薛鸿祥, 唐文勇. 基于全寿命裂纹扩展模型的钛合金球壳疲劳可靠性分析[J]. 上海交通大学学报, 2013, 47(2):307-311.
[25]  Chen Chenghao, Xue Hongxiang, Tang Wenyong. Fatigue reliability analysis based on crack growth model of total fatigue life for titanium alloy spherical shell[J]. <i>Journal of Shanghai Jiaotong University</i>, 2013, 47(2):307-311(in Chinese).
[26]  Zhang J, Chen H Z, Huang H W, et al. Efficient response surface method for practical geotechnical reliability analysis[J]. <i>Computers & Geotechnics</i>, 2015, 69:496-505.
[27]  Rom M, Avriel M. Probabilistic analysis of circular tunnels in homogeneous soil using response surface methodology[J]. <i>Journal of Geotechnical and Geoenvironmental Engineering</i>, 2009, 135(9):1314-1325.
[28]  Ding Youliang, Li Aiqun, Yao Xiaozheng, et al. Chaotic dynamics analysis and improved response surface method for structural reliability[J]. <i>Chinese Journal of Applied Mechanics</i>, 2009, 26(1):66-70(in Chinese).
[29]  赵洁. 机械可靠性分析的响应面法研究[D]. 西安:西北工业大学航空学院, 2006.
[30]  Zhao Jie. Study on Response Surface Method for Mechanical Reliability Analysis[D]. Xi’an:School of Aerospace, Northwestern Polytechnical University, 2006(in Chinese).
[31]  Yang D, Li G, Cheng G. Convergence analysis of first order reliability method using chaos theory[J]. <i>Computers & Structures</i>, 2006, 84(8):563-571.
[32]  Yang D. Chaos control for numerical instability of first order reliability method[J]. <i>Communications in Nonlinear</i> <i>Science & Numerical Simulation</i>, 2010, 15(10):3131-3141.
[33]  余建星, 郭帅, 余杨, 等. 裂纹参数对深水海底管道疲劳寿命的影响[J]. 天津大学学报:自然科学与工程技术版, 2016, 49(9):889-895.
[34]  韩庆华, 叶菲, 徐杰. 随机疲劳在土木工程中的研究综述[J]. 天津大学学报:自然科学与工程技术版, 2016, 49(9):896-901.
[35]  Han Qinghua, Ye Fei, Xu Jie. Review of random fatigue research in civil engineering[J]. <i>Journal of Tianjin University</i>:<i>Science and Technology</i>, 2016, 49(9):896-901(in Chinese).
[36]  Jin Weiliang, Fu Yong, Zhao Dongyan, et al. Fracture and fatigue assessment on submarine pipelines with crack damages[J]. <i>The Ocean Engineering</i>, 2005, 23(3):7-16(in Chinese).
[37]  柴宝堆. 含裂纹海洋立管的疲劳寿命及可靠性分析[D]. 兰州:兰州理工大学石油化工学院, 2013.
[38]  Chai Baodui. Fatigue Life and Reliability Analysis of Cracked Marine Riser[D]. Lanzhou:School of Petrochemical Engineering, Lanzhou University of Technology, 2013(in Chinese).
[39]  Zhang Ming, Jin Feng. <i>Structural Reliability Computations</i>[M]. Beijing:Science Press, 2015(in Chinese).
[40]  Khan R A, Ahmad S. Fatigue reliability assessment of marine risers in deep offshore fields in Indian ocean [C]// <i>ASME<i> 2010, <i>Biennial Conference on Engineering Systems Design and Analysis</i>. Istanbul, Turkey, 2010:171-181.
[41]  孟广??, 王立君. 疲劳裂纹扩展公式d<i>a</i>/d<i>N</i>=<i>C</i>(Δ<i>K</i>)<i><sup>m</sup></i>中<i>C</i>与<i>m</i>相关性的研究[J]. 天津大学学报, 1989(3):18-24.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133