全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

干燥盘电阻焊结构有限元分析及设计
Finite Element Analysis and Design of the Resistance Welding Structure of the Drying Plate

DOI: 10.11784/tdxbz201610083

Keywords: 干燥盘,电阻焊,有限元,焊点设计
drying plate
,resistance welding,finite element,welding spot design

Full-Text   Cite this paper   Add to My Lib

Abstract:

干燥盘为具有多焊缝、大尺寸和大变形等特点的薄壁压力容器, 采用电阻焊焊接时焊点数量直接影响干燥盘的承载能力、变形情况和焊接工作量.基于ANSYS模拟软件建立电阻焊干燥盘模型, 研究不同工作温度和压力下干燥盘的变形和应力分布, 从而设计满足工艺要求的焊点数量.模拟结果表明, 干燥盘薄弱环节一般出现在板的内孔和外沿冲窝分布不均匀处.在极限工作条件300 ℃、0.4 MPa下, 当焊点等效直径为17 mm, 即每个冲窝内采用5个焊点焊接时, 干燥盘的最大变形为0.577 mm, 最大应力为174 MPa, 满足工艺变形和强度要求.根据上述结构设计生产出干燥盘并进行水压试验, 结果表明水压试验合格, 模拟得到的干燥盘结构设计是可行的.
The drying plate is a thin-wall pressure vessel with multiple welds,large size and large deformation. The number of resistance welding spots directly affects its bearing capacity,deformation and welding workload. Based on ANSYS simulation software,the model of resistance welding drying plate was established to study the deformation and stress distribution under different temperatures and pressures. As a result,the number of welding spots was designed to meet the technical requirements. The simulation results show that the weak link of drying plate generally appears at the inner and outer edges of the cover plate where the punch distribution is uneven. Under the extreme working conditions of 300 ℃ and 0.4 MPa,when the equivalent spot diameter is 17 mm(5 spots in every punching hole),the maximum deformation of drying plate is 0.577 mm and the maximum stress is 174 MPa,which can satisfy the requirements of technical deformation and strength. According to the above structure,the drying plate was designed and produced,and the water pressure test was carried out. The results show that the water pressure test is qualified and the structure design of the drying plate is feasible

References

[1]  Li Jiangfei, Qi Haibo, Ren Deliang, et al. Numerical simulation of welding process on thin-walled multiwelds complex component[J]. <i>Transactions of the China Welding Institution</i>, 2015, 36(1):87-90(in Chinese).
[2]  张家菊, 张玉萍. 汽车车身电阻点焊焊点强度影响因素的分析[J]. 焊接技术, 1995(5):8-10.
[3]  Zhang Jiaju, Zhang Yuping. Analysis of influencing factors on strength of resistance spot welding spot of automobile body[J]. <i>Welding Technology</i>, 1995(5):8-10(in Chinese).
[4]  曾峰. 一种连续干燥器的干燥盘结构:中国, 201520441221. 2[P]. 2015-11-18.
[5]  Zeng Feng. A Kind of Drying Ray Structure of Continuous Dryer:CN, 201520441221. 2[P]. 2015-11-18(in Chinese).
[6]  张辉. Q235钢在火灾条件下的力学性能研究[J]. 火灾科学, 2004, 13(2):74-77.
[7]  Zhang Hui. Mechanical performance of Q235 steel under fire condition[J]. <i>Fire Safety Science</i>, 2004, 13(2):74-77(in Chinese).
[8]  Wang Lixin. Study on the Structure Optimization and Stamping Deformation of Drying Tray[D]. Shijiazhuang:School of Material Science and Engineering, Shijiazhuang Tiedao University, 2015(in Chinese).
[9]  张磊, 童根树. 薄壁构件整体稳定性的有限元模拟[J]. 浙江大学学报:工学版, 2011, 45(3):531-538.
[10]  Zhang Lei, Tong Genshu. Finite element modeling of thin-walled member in overall stability analysis[J]. <i>Journal of Zhejiang University</i>:<i>Engineering Science</i>, 2011, 45(3):531-538(in Chinese).
[11]  朱振华, 徐成海. 盘式连续干燥器中物料在干燥盘上停留时间的研究[J]. 长春理工大学学报, 2004, 27(3):58-60.
[12]  Zhu Zhenhua, Xu Chenghai. Studies on settle time of materiel in the disc type continuous drier[J]. <i>Journal of Changchun University of Science and Technology</i>, 2004, 27(3):58-60(in Chinese).
[13]  Deng De’an, Tong Yangang, Zhou Zhongyu. Numerical modeling of welding distortion in thin-walled mild steel pipe[J]. <i>Transactions of the China Welding Institution</i>, 2011, 32(2):81-84(in Chinese).
[14]  李江飞, 齐海波, 任德亮, 等. 薄壁多焊缝复杂构件焊接过程的数值模拟[J]. 焊接学报, 2015, 36(1):
[15]  邓德安, 童彦刚, 周中玉. 薄壁低碳钢管焊接变形的数值模拟[J]. 焊接学报, 2011, 32(2):81-84.
[16]  87-90.
[17]  王立新. 干燥盘结构优化及冲压变形研究[D]. 石家庄:石家庄铁道大学材料科学与工程学院, 2015.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133