全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

速度分布对气体超声流量计声传播规律的影响
Effect of Velocity Distribution on Acoustic Propagation of Gas Ultrasonic Flowmeter

DOI: 10.11784/tdxbz201608022

Keywords: 气体超声流量计,声传播,射线追踪方法
gas ultrasonic flowmeter
,acoustic propagation,ray tracing method

Full-Text   Cite this paper   Add to My Lib

Abstract:

气体超声流量计广泛应用于天然气贸易计量, 在实际工业现场, 由于流态和流速的不同, 使得超声波传播特性呈现不同的规律.为了研究这一规律的变化特征, 文中提出了一种基于COMSOL仿真的射线追踪方法来模拟单声道气体超声流量计的测量过程, 并验证了该仿真方法的正确性.选取充分发展湍流和单弯头下游的速度分布为研究对象, 以5个不同的速度点为入口流速, 讨论超声波传播轨迹、传播时间、轨迹偏移量、声压分布等参数随流速、流态的变化规律, 进而分析其对流量测量的影响, 提出一种改善测量误差的修正方法, 使测量误差最大降低约4% , 达到修正效果.
Gas ultrasonic flowmeter is widely used in the natural gas trade measurement. However,in the actual industrial field,due to the different flow patterns and flow velocities,the ultrasonic propagation presents different characteristics. In order to study the laws of ultrasonic propagation,a ray tracing method based on COMSOL is proposed to simulate the measurement process of single channel gas ultrasonic flowmeter,and the correctness of the simulation method is verified. The velocity distributions of fully developed turbulence and single elbow are selected as measurement object. For five different inlet velocities,the laws governing the changes of ultrasonic propagation trajectory,time,deviation and pressure distribution with flow velocity and flow pattern are discussed. Furthermore,the influence of the change laws on the flow measurement is analyzed. Besides,a correction method to reduce measurement error is proposed,which can achieve satisfactory correction effect with the maximum measurement error decrease of 4%

References

[1]  Moore P I, Johnson A N, Espina P I. Simulations of ultrasonic transit time in a fully developed turbulent flow using a ray-tracing method[C]// <i>North Sea Flow Measurement Workshop</i>. Scotland, 2002.
[2]  张海澜. 理论声学[M]. 北京:高等教育出版社, 2007.
[3]  Zhang Hailan. <i>Theoretical Acoustics</i>[M]. Beijing:Higher Education Press, 2007(in Chinese).
[4]  杜功焕, 朱哲民, 龚秀芬. 声学基础[M]. 3版. 南京:南京大学出版社, 2012.
[5]  Du Gonghuan, Zhu Zhemin, Gong Xiufen. <i>Acoustics Foundation</i>[M]. 3rd ed. Nanjing:Nanjing University Press, 2012(in Chinese).
[6]  Moore P I, Brown G J, Stimpson B P. Ultrasonic transit-time flowmeters modelled with theoretical velocity profiles:Methodology[J]. <i>Measurement Science and Technology</i>, 2000, 11(12):1802-1811.
[7]  Li Yuezhong, Wu Jiangtao, Hu Kaiming. Numerical simulating nonlinear effects of ultrasonic propagation on high-speed ultrasonic gas flow measurement[J]. <i>Applied Mathematics & Information Science</i>, 2013, 7(5):1963-1967.
[8]  马佳男. 基于格林函数的近场声全息技术[D]. 哈尔滨:哈尔滨工程大学水声工程学院, 2012.
[9]  Ma Jianan. Near-Field Acoustic Holography Technology Based on Green’s Function[D]. Harbin:College of Underwater Acoustic Engineering, Harbin Engineering University, 2012(in Chinese).
[10]  McCartney M L, Mudd C P, Livengood R D. A corrected ray theory for acoustic velocimetry[J]. <i>Journal of the Acoustical Society of America</i>, 1979, 65(1):50-55.
[11]  Yeh T T, Mattingly G E. Ultrasonic flow measurement technology:Prospects for transfer and primary standards [C]//<i>FLOMEKO</i>. Lund, Sweden, 1998:161-166.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133