全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

基于点云协方差描述子的多机器人目标识别与编队跟踪
Multi-Robot Object Recognition and Formation Tracking Based on Point Cloud Covariance Descriptors

DOI: 10.11784/tdxbz201612058

Keywords: 点云数据,协方差描述子,支持向量机,势场函数,多机器人编队跟踪
point cloud data
,covariance descriptor,support vector machine(SVM),potential field function,multi-robot formation tracking

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对多移动机器人目标识别及编队跟踪问题, 提出一种基于点云协方差描述子的目标识别方法及编队跟踪控制方法.为降低机器人端机载处理器负荷, 基于WebSocket协议搭建网络架构.在此基础上, 通过引入点云协方差描述子进行目标检测, 并利用支持向量机完成离线建模.结合支持向量机分类器与Kullback-Leibler Divergence(KLD)-Sampling自适应粒子滤波算法, 实现目标部分遮挡下的在线识别, 得到目标点云跟踪位置信息.利用势场函数和有向刚性图论综合设计编队跟踪控制器, 实现多机器人编队目标跟踪.最后通过实物平台进行实验, 结果表明, 所提出的基于点云协方差描述子的多机器人目标识别与编队跟踪算法, 与传统方法相比, 跟踪收敛时间缩短4 s, 跟踪精度提高约2.5% , 通过搭载有限数量传感器, 可以更有效地解决多机器人编队目标跟踪问题.
To deal with the problem of object recognition and formation tracking with multi-robot,an object recognition method based on point cloud covariance descriptors was proposed,and a new formation tracking control method was designed. In order to reduce the load on the robot,the network architecture based on the WebSocket protocol was built. Firstly,a point cloud covariance descriptor was introduced to perform object detection,and the off-line modeling was performed using support vector machine(SVM). Then,combining SVM classifier with Kullback-Leibler Divergence(KLD)-Sampling adaptive particle filter,the problem of on-line matching and recognition under partial occlusion was solved effectively,and on-line recognition was accomplished to obtain object point cloud tracking position information. Finally,a multi-robot formation tracking controller was designed based on potential field function and directed rigid graph theory. The multi-robot object tracking is realized and validated by physical platform. The experimental results show that compared with the traditional method,the tracking convergence time is shortened by 4 s and the tracking precision is improved by 2.5% ,which proves that the proposed algorithm can effectively solve the problem of multi-robot formation object tracking by carrying a limited number of sensors

References

[1]  Rusu R B, Cousins S. 3D is here:Point cloud library(PCL)[C]// <i>IEEE International Conference on Robotics and Automation.<i> Shanghai, China, 2011:1-4.
[2]  Chang C C, Lin C J. LIBSVM:A library for support vector machines[J]. <i>ACM Transactions on Intelligent Systems and Technology</i>, 2007, 2(3):389-396.
[3]  Fox D. KLD-sampling:Adaptive particle filters[C]//<i>The</i> 15<i>th Annual Neural Information Processing Systems Conference on</i> <i>Advances in Neural Information Processing Systems</i>. Vancouer, Canada, 2001:713-720.</i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i>
[4]  Rusu R B, Blodow N, Beetz M. Fast point feature histograms(FPFH)for 3D registration[C]// <i>IEEE International Conference on Robotics and Automation.<i> Kobe, Japan, 2009:3212-3217.
[5]  Rusu R B, Bradski G, Thibaux R, et al. Fast 3D recognition and pose using the viewpoint feature histogram [C]// <i>IEEE/RSJ</i> <i>International Conference on Intelligent Robots and Systems.<i> Taipei, Taiwan, China, 2010:2155-2162.
[6]  Tuzel O, Porikli F, Meer P. Region covariance:A fast descriptor for detection and classification[C]//<i>European Conference on Computer Vision</i>. Graz, Austria, 2006:589-600.
[7]  Fehr D, Cherian A, Sivalingam R, et al. Compact covariance descriptors in 3D point clouds for object recognition[C]// <i>IEEE International Conference on Robotics and Automation.<i> Minnesota, USA, 2012:1793-1798.
[8]  Hendrickx J M, Anderson B D O, Delvenne J C, et al. Directed graphs for the analysis of rigidity and persistence in autonomous agent systems[J]. <i>International Journal of Robust & Nonlinear Control</i>, 2007, 17(10/11):960-981.
[9]  Wang V, Salim F, Moskovits P. <i>The WebSocket Protocol</i>[M]. New York:Apress, 2013.
[10]  Okada Kei. ROS(robot operating system)[J]. <i>Journal of the Robotics Society of Japan</i>, 2012, 30(9):830-835.
[11]  Lai K, Bo L, Ren X, et al. A large-scale hierarchical multiview RGB-D object dataset[C]// <i>IEEE International Conference on Robotics and Automation</i>. Shanghai, China, 2011:1817-1824.
[12]  Lian Z, Godil A, Bustos B, et al. SHREC’11 track:Shape retrieval on non-rigid 3D watertight meshes[C]// <i>Eurographics Workshop on<i> 3<i>D Object Retrieval.<i> Landudno, UK, 2011:79-88.
[13]  Wohlkinger W, Aldoma A, Rusu R B, et al. 3D net:Large-scale object class recognition from CAD models [C]// <i>IEEE International Conference on Robotics and Automation.<i> Minnesota, USA, 2012:5384-5391.
[14]  Singh A, Sha J, Narayan K S, et al. BigBIRD:A large-scale 3D database of object instances[C]// <i>IEEE International Conference on Robotics and Automation.<i> Hong Kong, China, 2014:509-516.
[15]  Arsigny V, Fillard P, Pennec X, et al. Log-Euclidean metrics for fast and simple calculus on diffusion tensors [J]. <i>Magnetic Resonance in Medicine</i>, 2006, 56(2):411-421.
[16]  Porikli F, Tuzel O, Meer P. Covariance tracking using model update based on lie algebra[C]// <i>IEEE Computer Society Conference on Computer Vision and Pattern Recognition.<i> New York, USA, 2006:728-735.
[17]  Wang P K C. Navigation strategies for multiple autonomous mobile robots moving in formation[J]. <i>Journal of Robotic Systems</i>, 1991, 8(2):177-195.
[18]  Balch T, Arkin R C. Behavior-based formation control for multirobot teams[J]. <i>IEEE Transactions on Robotics & Automation</i>, 1998, 14(6):926-939.
[19]  Tombari F, Salti S, Stefano L D. Unique signatures of histograms for local surface description[C]// <i>European Conference on Computer Vision</i>. Heraklion, Crete, Greece, 2010:356-369.
[20]  Tan K, Lewis M A. Virtual structures for high-precision cooperative mobile robotic control[C]// <i>IEEE/RSJ International Conference on Intelligent Robots and Systems.<i> Osaka, Japan, 1996:132-139.
[21]  Kammerl J, Blodow N, Rusu R B, et al. Real-time compression of point cloud streams[C]// <i>IEEE International Conference on Robotics and Automation.<i> Minnesota, USA, 2012:778-785.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133