全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

2.5 Gb/s低噪声差分交叉耦合跨阻放大器的设计与实现
A Novel 2.5 Gb/s Low Noise Differential Cross-Coupled Transimpedance Amplifier

DOI: 10.11784/tdxbz201605045

Keywords: 光接收机,调节型共源共栅,跨阻放大器,低噪声,CMOS
optical receiver
,regulated cascode configuration,transimpedance amplifier,low noise,CMOS

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文基于UMC 0.18 μm CMOS工艺, 设计了一款低噪声交叉耦合结构的跨阻放大器.该电路由优化的调节型共源共栅(RGC)结构和输出缓冲级构成, 其中采用两级共源放大器作为RGC结构的辅助放大器, 用于提升电路的等效跨导和带宽.此外, 通过优化电路参数以及在输入端引入阶梯型无源匹配网络来进一步拓展带宽和降低电路噪声.测试结果表明, 在探测器等效电容为300 pF时, 所设计跨阻放大器芯片的-3 dB带宽为2.2 GHz, 跨阻增益为 61.8 dBΩ, 平均等效输入噪声电流谱密度仅为, 成功实现了2.5 Gb/s的传输速率.在1.8 V电源电压下, 芯片功耗为43 mW, 包括焊盘在内的芯片总面积为1×1 mm2.
A low noise differential cross-coupled transimpedance amplifier(TIA)was designed and implemented in UMC 0.18 μm CMOS process,and the TIA consisted of a modified regulated cascode(RGC)configuration and an output buffer. An auxiliary amplifier constructed by two-stage common-source topology in RGC was adopted to improve the equivalent transconductance and the bandwidth. In addition,by optimizing the circuit parameters and introducing a ladder passive matching network at the input node,the bandwidth was further expanded and the noise was also reduced. The measured results demonstrate that the fabricated TIA with a photodetector capacitance of 300 pF has a transimpedance gain of 61.8 dBΩ and a -3 dB bandwidth of 2.2 GHz,and the average input-referred noise current spectral density is only . The eye pattern measurement shows that a data rate of 2.5 Gb/s is successfully achieved. The chip consumes 43 mW DC power under 1.8 V supply voltage and occupies an area of 1×1 mm2 including pads

References

[1]  Lu Zhenghao, Kiat S Y, Ma Jianguo, et al. Broad-band technique for transimpedance amplifiers[J]. <i>IEEE Transaction on Circuits and Systems</i>, 2007, 54(3):590-599.
[2]  Analui B, Hajimiri A. Bandwidth enhancement for transimpedance amplifiers[J]. <i>IEEE Journal of Solid-State Circuits</i>, 2004, 399(8):1263-1270.
[3]  Xie Sheng, Guo Jing, Guan Kun, et al. Design and realization of InP/AlGaInAs multiple quantum well ring laser[J]. <i>Transactions of Tianjin University</i>, 2014, 20(6):402-406.
[4]  Xie Sheng, Tao Xizi, Mao Luhong, et al. A high-Gm differential regulated cascode transimpedance amplifier [J]. <i>Transactions of Tianjin University</i>, 2016, 22(14):345-351.
[5]  Maruf N A, Joseph Chong, Dong S H. A 100 Gb/s transimpedance amplifier in 65 nm CMOS technology for optical communications[C]// 2014 <i>IEEE International Symposium on Circuits and Systems</i>. Melbourne, Australia, 2014:1885-1888.
[6]  Sang G K, Seung H J, Yun S E. A 50-Gb/s differential transimpedance amplifier in 65 nm CMOS technology [C]// <i>IEEE Asian Solid-State Circuits Conference</i>. Kaohsiung, Taiwan, China, 2014:357-360.
[7]  Ponchet A F, Bastida E M, Panepucci R R, et al. Design and characterization of 0.13 μm CMOS and BiCMOS low noise transimpedance amplifiers for high speed optical interconnects[C]// <i>IEEE Microwave and Optoelectronics Conference</i>. Porto de Galinhas, Brazil, 2015:1-6.
[8]  Shahab S, Bardia B, Ali Medi, et al. Low-noise transimpedance?amplifier designg procedure for optical communications[C]// <i>IEEE Microelectronics Conference</i>. Graz, Austria, 2014:1-5.
[9]  Mitran P, Beadoin F, Elgamal M N. A 2.5 Gbit/s CMOS optical receiver frontend[C]// <i>IEEE International Symposium on Circuits and Systems</i>. Scottsdale, USA, 2002:441-444.
[10]  Atef M, Zimmermann H. 2.5 Gbit/s transimpedance amplifier using noise cancelling for optical receivers [C]// <i>IEEE International Symposium on Circuits and Systems</i>. Seoul, Korea, 2012:1740-1743.
[11]  Han L, Ye Y Z. 2.5 Gb/s CMOS RGC transimpedance amplifier[C]// <i>IEEE Internatonal Conference on Microelectronics</i>. San Diego, California, USA, 2007:19-22.</i></i>
[12]  Joohwa K, James F B. A 40-Gb/s optical transceiver front-end in 45 nm SOI CMOS[J]. <i>IEEE Journal of Solid-State Circuits</i>, 2012, 47(3):615-626.
[13]  Tian Jindong, Zhou Ge, Zhang Nan, et al. Using wavelength routing in the optical interconnection computer network[J]. <i>Transactions of Tianjin University</i>, 2000, 6(2):107-111.
[14]  Park S M, Yoo H J. 1. 25-Gb/s regulated cascode CMOS transimpedance amplifier for gigabit Ethernet applications[J]. <i>IEEE Journal of Solid-State Circuits</i>, 2004, 39(1):112-121.
[15]  Seifouri M, Amiri P, Rakide M. Design of broadband transimpedance amplifier for optical communication systems[J]. <i>Microelectronics Journal</i>, 2015, 46(8):679-684.
[16]  Lee J, Park H G, Kim I S, et al. A 6 Gb/s low power transimpedance amplifier with inductor peaking and gain control for 4-channel passive optical network in 0.13 μm CMOS[J]. <i>Journal of Semiconductor Technology and Science</i>, 2015, 15(1):122-130.
[17]  Behrooz N, Mona M H. A 5-Gb/s noise optimized receiver using a switched TIA for wireless optical communications[J]. <i>IEEE Transactions on Circuits and Systems</i>, 2014, 61(4):1255-1268.
[18]  Li Dan, Gabriele M, Matteo R, et al. A low-noise design technique for high-speed CMOS optical receivers [J]. <i>IEEE Journal of Solid-State Circuits</i>, 2014, 49(6):1437-1446.
[19]  Seung H K, Chi U K, Jong H L. Design of 2.5 Gb/s transimpedance amplifier using CMOS technologies [C]// <i>IEEE the<i> 9<i>th International Conference on Advanced Communication Technology</i>. PyeongChang, Korea, 2007:1825-1828.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133