全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

钢纤维混凝土浇筑过程中纤维运动的数值模拟
Numerical Simulation of Fiber Motion in the Process of Steel Fiber Reinforced Concrete Casting

DOI: 10.11784/tdxbz201507047

Keywords: 钢纤维混凝土,纤维分布,纤维取向,CFX,MATLAB
steel fiber reinforced concrete
,distribution of fibers,orientation of fibers,CFX,MATLAB

Full-Text   Cite this paper   Add to My Lib

Abstract:

纤维混凝土构件内纤维的分布形态对其受力性能有着直接的影响, 因此, 研究自密实混凝土浇筑过程中纤维的运动以及得到其在构件内部最终的分布形态具有十分重要的意义.本文利用ANSYS CFX软件中的流体计算模块及拉格朗日粒子追踪功能, 通过MATLAB自编程序调用和完善ANSYS CFX强大的流体计算能力, 得到一种模拟自密实钢纤维混凝土浇筑过程中纤维运动的新方法.将单根钢纤维简化为两个距离固定(为纤维长度)的球形粒子, ANSYS CFX模拟粒子在整个浇筑过程中的运动, MATLAB自编程序控制粒子之间的固定配对并保证每对粒子在计算过程中保持相对距离不变.通过数值模拟浇筑一根1 200 mm×150 mm×150 mm的梁来验证计算的精确性.将模拟结果与实验结果进行对比, 证明了模拟方法的适用有效性.这种新方法可用于各种掺量刚性纤维自密实混凝土的浇筑流动模拟.
It is of great significance to study the motion of fibers during the flow of concrete mixture and the final distribution and orientation of fibers in members,because the distribution and orientation of fibers could directly determine the mechanical properties and behaviors. A new method has been put forward to simulate the motion of steel fibers in self-compacting concrete mixture during the flow by the program written by MATLAB,which can call the fluid calculation module as well as Lagrangian particle tracking function in ANSYS CFX. The ends of a fiber are represented by two particles with fixed distance(the fiber length). ANSYS CFX simulates the motion of fibers during the flow,while MATLAB program control each particle belongs to a fixed fiber and guarantees that the length of each fiber remains unchanged. To verify the accuracy of the model,a beam of 1 200 mm×150 mm×150 mm was cast through numerical simulations. The simulation method is proved to be effective and feasible through the comparison between the simulation results and the experimental results. The new method can be used to simulate the flow of self-compacting concrete with different volume fraction of rigid fibers

References

[1]  Kang S T, Kim J K. Investigation on the flexural behavior of UHPCC considering the effect of fiber orientation distribution[J]. <i>Construction and Building Materials</i>, 2011, 28(1):57-65.
[2]  Ponikiewski T, Go?aszewski J, Rudzki M, et al. X-ray computed tomography harnessed to determine 3D spacing of steel fibres in self compacting concrete(SCC)slabs [J]. <i>Construction and Building Materials</i>, 2015, 74:102-108.
[3]  St?hli P, Custer R, van Mier J G M. On flow properties, fibre distribution, fibre orientation and flexural behaviour of FRC[J]. <i>Materials and Structures</i>, 2008, 41(1):189-196.
[4]  Li Hui. Investigation on the Preparation and Properties of the Aligned Steel Fiber Reinforced Concrete[D]. Tianjin:School of Architecture and Civil Engineering, Hebei University of Technology, 2014(in Chinese).
[5]  Vasilic K, Meng B, Kühne H C, et al. Flow of fresh concrete through steel bars:A porous medium analogy [J]. <i>Cement and Concrete Research</i>, 2011, 41(5):496-503.
[6]  Liu G R, Liu M B. <i>Smoothed Particle Hydrodynamics</i>:<i>A Meshfree Particle Method</i>[M]. Singapore:World Scientific Publishing Company, 2003.
[7]  Esmaeilkhanian B, Khayat K H, Yahia A, et al. Effects of mix design parameters and rheological properties on dynamic stability of self-consolidating concrete [J]. <i>Cement & Concrete Composites</i>, 2014, 54:21-28.
[8]  Feng Shiming. Introduction and experience of concrete rheological research in Iceland[J]. <i>Concrete</i>, 2001(3):26-29(in Chinese).
[9]  Kang S T, Lee B Y, Kim J K, et al. The effect of fibre distribution characteristics on the flexural strength of steel fibre-reinforced ultra high strength concrete[J]. <i>Construction and Building Materials</i>, 2011, 25(5):2450-2457.
[10]  窦国钦, 杜修力, 李亮. 冲击荷载作用下钢纤维混凝土配筋梁性能试验[J]. 天津大学学报:自然科学与工程技术版, 2015, 48(10):864-872.
[11]  Dou Guoqin, Du Xiuli, Li Liang. Experiment on behavior of reinforced concrete beams with steel fiber under impact load[J]. <i>Journal of Tianjin University</i>:<i>Science and Technology</i>, 2015, 48(10):864-872(in Chinese).
[12]  Ponikiewski T, Go?aszewski J, Rudzki M, et al. Determination of steel fibres distribution in self-compacting concrete beams using X-ray computed tomography[J]. <i>Archives of Civil and Mechanical Engineering</i>, 2015, 15(2):558-568.
[13]  Torrijos M C, Barragán B E, Zerbino R L. Placing conditions, mesostructural characteristics and post-cracking response of fibre reinforced self-compacting concretes[J]. <i>Construction & Building Materials</i>, 2010, 24(6):1078-1085.
[14]  李辉. 单向分布钢纤维混凝土的制备以及力学性能试验研究[D]. 天津:河北工业大学建筑与土木工程学院, 2014.
[15]  Roussel N, Geiker M R, Dufour F, et al. Computational modeling of concrete flow:General overview[J]. <i>Cement and Concrete Research</i>, 2007, 37(9):1298-1307.
[16]  Mechtcherine V, Shyshko S. Simulating the behaviour of fresh concrete with the distinct element method―Deriving model parameters related to the yield stress[J]. <i>Cement & Concrete Composites</i>, 2015, 55:81-90.
[17]  Deeb R, Karihaloo B L, Kulasegaram S. Reorientation of short steel fibres during the flow of self-compacting concrete mix and determination of the fibre orientation factor[J]. <i>Cement and Concrete Research</i>, 2014, 56:112-120.
[18]  Rahman M K, Baluch M H, Malik M A. Thixotropic behavior of self compacting concrete with different mineral admixtures[J]. <i>Construction and Building Materials</i>, 2014, 50:710-717.
[19]  冯士明. 冰岛混凝土流变性研究简介及思考[J]. 混凝土, 2001(3):26-29.
[20]  Azese M N. In an attempt to generalize wall slip in fluid flows using a series expansion of the wall shear stress:Case of non-Newtonian [Phan-Thien-Tanner fluid][J]. <i>European Journal of Mechanics B/Fluids</i>, 2015, 52:109-119.
[21]  Peíez-González J, López-Durán J, Marín-Santibá?ez B M, et al. Rheo-PIV of a yield-stress fluid in a capillary with slip at the wall[J]. <i>Rheologica Acta</i>, 2012, 51(11/12):937-946.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133