全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

条形基础嵌入问题的大变形有限元对比分析
Comparison of Large Deformation Finite Element Methods for Penetration of Strip Foundations

DOI: 10.11784/tdxbz201504094

Keywords: 大变形,网格重划分法,耦合的欧拉-拉格朗日法,条形基础,嵌入
large deformation
,rezoned meshes method,coupled Eulerian-Lagrangian method,strip foundation,penetration

Full-Text   Cite this paper   Add to My Lib

Abstract:

岩土工程中, 土与结构的耦合作用通常导致土体产生极大变形, 即大变形问题, 如桩、桩靴和吸力锚的嵌入安装.传统有限元法在求解大变形问题时, 网格将产生极大变形, 导致计算误差很大, 甚至不收敛.基于条形基础嵌入问题, 对两种不同的大变形有限元法(网格重划分法和CEL法)进行对比分析.给出了两种大变形有限元法的实现流程, 并分析了条形基础在均质各向同性和正常固结黏土中的嵌入问题, 通过与条形基础承载力公式和RITSS大变形有限元法对比, 验证了两种方法的有效性; 通过用户子程序, 模拟了正常固结黏土不排水抗剪强度随基础嵌入的变化规律; 对比了条形基础嵌入过程中土体的流动机制.
In geotechnical engineering,soil-structure interactional problems always involve large deformations of soil,such as the penetration of piles,spudcans and suction caissons. Large mesh distortions can occur in the classical finite element analysis due to large deformations,which will induce a calculation error and even fail to get a convergent solution. A comparative study of two different large deformation finite element methods,i. e.,the rezoned meshes method and the CEL method,on the penetration of strip foundations was carried out. The two methods were elaborated and used to analyze the penetration of strip foundations in homogeneous and normally consolidated clays. In comparison with the bearing capacity formula and the results of the RITSS approach,the efficiency of the two methods is well verified. With a user defined subroutine,the undrained shear strength of the normally consolidated clay can be updated with the penetration of strip foundations. The soil flow mechanisms during the penetration of strip foundations are also presented

References

[1]  Hu Y, Randolph M F. H-adaptive FE analysis of elasto-plastic non-homogeneous soil with large deformation [J]. <i>Computers and Geotechnics</i>, 1998, 23(1):61-83.
[2]  Song Z, Hu Y, Randolph M F. Numerical simulation of vertical pullout of plate anchors in clay [J]. <i>Journal of Geotechnical and Geoenvironmental Engineering</i>, 2008, 134(6):866-875.
[3]  Davis E H, Booker J R. The effect of increasing strength with depth on the bearing capacity of clays [J]. <i>Geotechnique</i>, 1973, 23(4):551-563.
[4]  于龙. 三维RITSS大变形有限元方法及其在基础刺入破坏和锚板承载力问题中的应用[D]. 大连:大连理工大学水利工程学院, 2008.
[5]  Yu Long. A 3-Dimensional RITSS Large Deformation Finite Element Method and Its Application on the Foundation Punch-Through Failure and Plate Anchor Uplift Resistance Problems [D]. Dalian:School of Hydraulic Engineering, Dalian University of Technology, 2008 (in Chinese).
[6]  Yu L, Liu J, Kong X J, et al. Three-dimensional numerical analysis of the keying of vertically installed plate anchors in clay[J]. <i>Computers and Geotechnics</i>, 2009, 36:558-367.
[7]  Wang D, Hu Y, Randolph M F. Three-dimensional large deformation finite-element analysis of plate anchors in uniform clay [J]. <i>Journal of Geotechnical and Geoenvironmental Engineering</i>, 2010, 136(2):355-365.
[8]  Benson D J, Okazawa S. Contact in a multi-material Eulerian finite element formulation [J]. <i>Computer Methods in Applied Mechanics and Engineering</i>, 2004, 193(39/40/41):4277-4298.
[9]  Qiu G, Henke S. Controlled installation of spudcan foundation on loose sand overlying weak clay [J]. <i>Marine Structures</i>, 2011, 24(4):528-550.
[10]  Chen Z, Tho K K, Leung C F, et al. Influence of overburden pressure and soil rigidity on uplift behavior of square plate anchor in uniform clay [J]. <i>Computers and Geotechnics</i>, 2013, 52:71-81.
[11]  Tho K K, Chen Z, Leung C F, et al. Pullout behaviour of plate anchor in clay with linearly increasing strength [J]. <i>Canadian Geotechnical Journal</i>, 2014, 51(1):92-102.
[12]  Zhao Yanbing, Liu Haixiao. Numerical simulation of drag anchor installation by a large deformation finite element technique [C]//<i>Proceedings of the</i> 33<i>rd International Conference on Ocean</i>, <i>Offshore and Arctic Engineering</i>. San Francisco, USA:American Society of Mechanical Engineers, 2014.
[13]  Liu Haixiao, Zhao Yanbing. Numerical study of the penetration mechanism and kinematic behavior of drag anchors using a coupled Eulerian-Lagrangian approach [J]. <i>Geotechnical Engineering Journal of the SEAGS & AGSSEA</i>, 2014, 45(4):29-39.
[14]  Skempton A W. The bearing capacity of clays [C]//<i>Proceedings of the Building Research Congress</i>. London, UK, 1951:180-189.
[15]  Hansen J B. A revised and extended formula for bearing capacity [J]. <i>Danish Geotechnical Institute Bulletin</i>, 1970, 28:5-11.
[16]  Tian Y, Cassidy M J, Randolph M F, et al. A simple implementation of RITSS and its application in large deformation analysis [J]. <i>Computers and Geotechnics</i>, 2014, 56:160-167.
[17]  Dassault Systemes. <i>ABAQUS, Version</i> 6.10 <i>Documentation</i> [M]. Paris:Dassault Systemes Simulia Corporation, 2010.
[18]  Benson D J. Computational methods in Lagrangian and Eulerian hydrocodes [J]. <i>Computer Methods in Applied Mechanics and Engineering</i>, 1992, 99(2/3):235-394.
[19]  Randolph M F, Wang D, Zhou H, et al. Large deformation finite element analysis for offshore applications [C]//<i>Proceedings of the</i> 12<i>th International Conference of International Association for Computer Methods and Advances in Geomechanics</i>. Goa, India:International Association for Computer Methods, 2008:3307-3318.
[20]  Qiu G, Henke S, Grabe J. Application of a coupled Eulerian-Lagrangian approach on geomechanical problems involving large deformations [J]. <i>Computers and Geotechnics</i>, 2011, 38(1/2):30-39.
[21]  Hu Y, Randolph M F. A practical numerical approach for large deformation problems in soil [J]. <i>International Journal for Numerical and Analytical Methods in Geomechanics</i>, 1998, 22(5):327-350.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133