全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

工作参数对垂直管内R124/DMAC鼓泡吸收能力的影响
Effect of Working Parameters on the Bubble Absorption Capacity of R124/DMAC in a Vertical Tube

DOI: DOI:10.11784/tdxbz201503027

Keywords: 鼓泡吸收,可视化,R124/DMAC,垂直管,吸收高度
bubble absorption
,visualization,R124/DMAC,vertical tube,absorption height

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过搭建一套垂直管管内鼓泡吸收可视化实验平台, 探究工作参数变化对以R124/DMAC为工质的管内鼓泡吸收过程流型变化及吸收高度的影响情况.吸收高度表征鼓泡吸收器的吸收能力, 在相同的工作参数下, 吸收高度越低表明鼓泡吸收器的吸收能力越强.实验结果表明, 吸收高度与气、液体积流率, 溶液入口温度、质量分数, 喷嘴孔径, 吸收压力及冷却效果均有关系.增加液体体积流率、吸收压力与增强冷却效果, 降低溶液入口温度、质量分数及喷嘴孔径, 均能降低鼓泡吸收高度, 提高吸收器的吸收能力.经对实验数据进行多元线性回归处理, 给出R124/DMAC鼓泡吸收高度的估算式, 误差约为±20% .
By constructing a set of visualization experimental platform for bubble absorption in the vertical tube,the influence of the working parameter changes on flow pattern change and absorption height in absorption process was explored for using R124/DMAC as working fluid. The absorption height can represent the absorption capacity of the bubble absorber. Low absorption height means high absorption capacity under the same conditions. Experimental results show that the absorption height is related to the refrigerant vapor flow rate,absorption solution flow rate,and its inlet temperature and mass fraction,the nozzle orifice diameter,absorption pressure and cooling effect. By increasing the solution flow rate and the absorption pressure,enhancing the cooling effect,decreasing the solution inlet temperature and mass fraction and the nozzle orifice diameter,all bubble absorption heights can be reduced and the absorption capacity of the absorber can be improved. By performing the multiple linear regression of experimental data,a correlation equation for estimating the R124/DMAC bubble absorption height was given within±20% error band

References

[1]  Kim H Y, Saha B B, Koyama S. Development of a slug flow absorber working with ammonia-water mixture(PartⅠ)―Flow characterization and experimental investigation[J]. <i>International Journal of Refrigeration</i>, 2003, 26(5):508-515.
[2]  Sujatha K S, Mani A, Murthy S S. Experiments on a bubble absorber[J]. <i>International Communications in Heat and Mass Transfer</i>, 1999, 26(7):975-984.
[3]  魏琪, 夏利江. 垂直管吸收器内泡式吸收过程的数值研究[J]. 制冷与空调, 2007, 7(1):35-38.
[4]  Borde I, Jelinek M, Daltrophe N C. Working fluids for an absorption system based on R124(2-chloro-1, 1, 1, 2-tetrafluoroethane) and organic absorbents[J]. <i>International Journal of Refrigeration</i>, 1997, 20 (4):256-266.
[5]  Arun M B, Maiya M P, Murthy S S. Optimal performance of double-effect series flow vapour absorption refrigeration systems with new working fluids [J]. <i>International Journal of Energy Research</i>, 1998, 22(11):1001-1017.
[6]  李见波, 徐士鸣, 刘福森. 车速变化对吸收/压缩混合制冷循环的影响[J]. 吉林大学学报:工学版, 2013, 43(2):291-297.
[7]  Li Jianbo, Xu Shiming. The performance of absorption-compression hybrid refrigeration driven by waste heat and power from coach engine[J]. <i>Applied Thermal Engineering</i>, 2013, 61(2):747-755.
[8]  Xu Shiming, Li Jianbo, Liu Fusen. An investigation on the absorption-compression hybrid refrigeration cycle driven by gases and power from vehicle engines[J]. <i>International Journal of Energy Research</i>, 2013, 37(12):1428-1439.
[9]  Castro J, Oliet C, Rodríguez I, et al. Comparison of the performance of falling film and bubble absorbers for air-cooled absorption systems[J]. <i>International Journal of Thermal Sciences</i>, 2009, 48(7):1355-1366.
[10]  唐忠利, 彭林明, 张树杨. 纳米流体强化CO<sub>2</sub>鼓泡吸收实验[J]. 天津大学学报, 2012, 45(6):534-539.
[11]  Wei Qi, Xia Lijiang. Numerical study of bubble absorption in vertical tube absorber[J]. <i>Refrigeration and Air-Conditioning</i>, 2007, 7(1):35-38(in Chinese).
[12]  夏利江, 魏琪. 垂直管吸收器内泡式吸收热质传递过程分析[J]. 郑州轻工业学院学报:自然科学版, 2007, 22(1):46-49.
[13]  Xia Lijiang, Wei Qi. Analysis of heat and mass transfer process during the bubble absorption process in vertical tubular absorber[J]<i>. Journal of Zhengzhou University of Light Industry</i>:<i>Natural Science</i>, 2007, 22(1):46-49(in Chinese).
[14]  路明, 徐士鸣. 汽车尾气余热制冷循环特性[J]. 制冷技术, 2010, 30(4):10-13.
[15]  Li Jianbo, Xu Shiming, Liu Fusen. Influence of driving speed on absorption/compression hybrid refrigeration cycle[J]. <i>Journal of Jilin University</i>:<i>Engineering and Technology Edition</i>, 2013, 43(2):291-297(in Chinese).
[16]  徐士鸣, 刘福森, 李见波. 废热/动力联合驱动的混合制冷循环特性分析[J]. 热科学与技术, 2012, 11(2):148-155.
[17]  Tang Zhongli, Peng Linming, Zhang Shuyang. Experiment on enhancement of bubble absorprion of gaseous CO<sub>2</sub> with nanofluids[J]. <i>Journal of Tianjin University</i>, 2012, 45(6):534-539(in Chinese).
[18]  Suresh M, Mani A. Experimental studies on heat and mass transfer characteristics for R134a-DMF bubble absorber[J]. <i>International Journal of Refrigeration</i>, 2012, 35(4):1104-1114.
[19]  Lu Ming, Xu Shiming. Characteristic of refrigeration cycle driven by waste heat exhausted from automobile[J]. <i>Refrigeration Technology</i>, 2010, 30(4):10-13(in Chinese).
[20]  Jelinek M, Levy A, Borde I. The performance of a triple pressure level absorption cycle(TPLAC) with working fluids based on the absorbent DMEU and the refrigerants R22, R32, R124, R125, R134a and R152a[J]. <i>Applied Thermal Engineering</i>, 2008, 28(11/12):1551-1555.
[21]  Xu Shiming, Liu Fusen, Li Jianbo. Characteristics of hybrid refrigeration cycle driven by waste heat and power from automobile engine[J]. <i>Journal of Thermal Science and Technology</i>, 2012, 11(2):148-155(in Chinese).
[22]  Yong T K, Atsushi A, Takao K. Analytical investigation of two different absorption modes:Falling film and bubble types[J]. <i>International Journal of Refrigeration</i>, 2000, 23(6):430-443.
[23]  Kim H Y, Saha B B, Koyama S. Development of a slug flow absorber working with ammonia-water mixture(Part Ⅱ)―Data reduction model for local heat and mass transfer characterization[J]. <i>International Journal of Refrigeration</i>, 2003, 26(6):698-706.
[24]  Ferreira C A, Keizer C, Machielsen C H M. Heat and mass transfer in vertical tubular bubble absorbers for ammonia-water absorption refrigeration systems[J]. <i>International Journal of Refrigeration</i>, 1984, 7(6):348-357.
[25]  Fernández-Seara José, Uhía F J, Sieres J. Analysis of an air cooled ammonia-water vertical tubular absorber [J]. <i>International Journal of Thermal Sciences</i>, 2007, 46(1):93-103.
[26]  罗玉林, 徐士鸣. 垂直风冷翅片管中氨水鼓泡吸收特性[J]. 化工学报, 2010, 61(2):289-295.
[27]  Luo Yulin, Xu Shiming. Ammonia-water bubble absorption in air-cooled vertical finned tube[J]. <i>CIESC Journal</i>, 2010, 61(2):289-295(in Chinese).
[28]  Suresh M, Mani A. Heat and mass transfer studies on R134a bubble absorber in R134a/DMF solution based on phenomenological theory[J]. <i>International Journal of Heat and Mass Transfer</i>, 2010, 53(13):2813-2825.
[29]  Suresh M, Mani A. Experimental studies on bubble characteristics for R134a-DMF bubble absorber[J]. <i>Experimental Thermal and Fluid Science</i>, 2012, 39(39):79-89.
[30]  Suresh M, Mani A. Heat and mass transfer studies on a compact bubble absorber in R134a-DMF solution based
[31]  vapour absorption refrigeration system[J]. <i>International Journal of Refrigeration</i>, 2013, 36(3):1004-1014.
[32]  Sujatha K S, Mani A, Murthy S S. Analysis of a bubble absorber working with R22 and five organic absorbents [J]. <i>Heat and Mass Transfer</i>, 1997, 32(4):255-259.
[33]  Sujatha K S, Mani A, Murthy S S. Finite element analysis of a bubble absorber[J]. <i>International Journal of Numerical Methods for</i> <i>Heat & Fluid Flow</i>, 1997, 7(7):737-750.
[34]  马友光, 余国琮. 气液相际传质的理论研究[J]. 天津大学学报, 1998, 31(4):506-510.
[35]  Ma Youguang, Yu Guocong. The theoretical studies of interphase mass transfer[J]. <i>Journal of Tianjin University</i>, 1998, 31(4):506-510(in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133