全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

超声频率和液位对空化场的影响
Effect of Ultrasonic Frequency and Liquid Level on the Cavitation Field

DOI: DOI:10.11784/tdxbz201506002

Keywords: 超声空化,频率漂移,谐振液位,空化强度,均匀性
ultrasonic cavitation
,frequency drift,resonance depth,cavitation intensity,uniformity

Full-Text   Cite this paper   Add to My Lib

Abstract:

空化效应是超声在化学反应过程中发挥作用的主要原因, 采用谱分析法衡量空化场强弱, 引入标准差评价空化场的均匀程度, 在标称频率20 kHz和40 kHz的清洗槽内, 研究了超声频率和槽内液位对空化场的影响效果.结果表明:超声波换能器使用中存在频率漂移现象, 利用水听器、示波器结合MATLAB软件测量计算实际工作频率分别为23.93 kHz和42.72 kHz; 低频时空化场的平均强度高, 但高频时空化场的均匀性更好; 清洗槽内存在谐振液位(30 mm、45 mm、60 mm、75 mm), 在这些液位处空化强度和均匀性均较好.
Cavitation plays an essential role in sonochemical reaction process. The spectrum analysis method was adopted to measure the cavitation intensity and the standard deviation was introduced to evaluate the uniformity of the cavitation field. The effects of ultrasonic frequency and liquid level on the cavitation field were studied in this paper in the ultrasonic cleaning tank with nominal frequencies of 20 kHz and 40 kHz. The results show that the frequency drift occurs when the ultrasonic transducers work. To analyze the frequency drift phenomenon,this paper puts forward a method to measure the actual frequency at work using the hydrophone,oscilloscope and MATLAB. The actual frequencies were measured to be 23.93 kHz and 42.72 kHz. Results indicate that the average intensity of cavitation is higher at low frequency,but the uniformity of cavitation distribution is better at high frequency. There are some resonance liquid levels at which the cavitation intensity and uniformity are both satisfactory such as at 30 mm,45 mm,60 mm and 75 mm

References

[1]  刘翠娟, 杨治伟, 慎爱民. 超声化学的发展与应用[J]. 佳木斯大学学报:自然科学版, 2005, 23(2):273-277.
[2]  刘丽艳, 闻精精, 杨洋, 等. 基于MATLAB的超声空化场表征与三维可视化[J]. 天津大学学报:自然科学与与工程技术版, 2013, 46(12):1133-1138.
[3]  刘丽艳, 杨洋, 刘?M宏, 等. 基于频谱分析方法的超声空化场三维重建及其分布[J]. 天津大学学报:自然科学与与工程技术版, 2014, 47(11):962-966.
[4]  Liu Liyan, Yang Yang, Liu Penghong, et al. 3D reconstruction of ultrasonic cavitation field and its distribution based on spectral analysis[J]. <i>Journal of Tianjin University</i>:<i>Science and Technology</i>, 2014, 47(11):962-966(in Chinese).
[5]  Liu L, Yang Y, Liu P, et al. The influence of air content in water on ultrasonic cavitation field[J]. <i>Ultrason-ics Sonochemistry</i>, 2014, 21(2):566-571.
[6]  Lu Bin. The Research on the Algorithm of Automatic Tracking Resonant Frequency for Ultrasonic Transducer [D]. Chongqing:School of Electrical Engineering, Chongqing University, 2012(in Chinese).
[7]  徐韶华, 熊显名. 基于DDS的频率自动跟踪超声波发生器的研制[J]. 仪器仪表学报, 2008, 29(8):406-409.
[8]  Liu Cuijuan, Yang Zhiwei, Shen Aimin. Development and application of ultrasonic chemistry[J]. <i>Journal of Jiamusi University</i>:<i>Science and Technology</i>, 2005, 23 (2):273-277(in Chinese).
[9]  Liu Liyan, Zhang Yu, Tan Wei. Ultrasound-assisted oxidation of dibenzothiophene with phosphotungstic acid supported on activated carbon[J]. <i>Ultrasonics Sonochemistry</i>, 2014, 21(3):970-974.
[10]  Suslick K S. Sonochemistry[J]. <i>Science</i>, 1990, 247(4949):1439-1445.
[11]  刘丽艳, 张瀚仁, 罗英鹏, 等. 超声波辅助煎炸废油酯交换制备生物柴油[J]. 中国油脂, 2014, 39(11):52-56.
[12]  Ma Dayou. <i>A Handbook of Acoustics</i>[M]. Beijing:Science Press, 1983(in Chinese).
[13]  卢斌. 超声波换能器谐振频率跟踪方法研究[D]. 重庆:重庆大学电气工程学院, 2012.
[14]  徐爱群. 超磁致伸缩换能器谐振频率自动跟踪方法[J]. 中国电机工程学报, 2009, 29(21):114-118.
[15]  Xu Aiqun. Method of automatic following resonance frequency for giant magnetostrictive transducer[J]. <i>Proceedings of the CSEE</i>, 2009, 29(21):114-118(in Chinese).
[16]  Liu Liyan, Zhang Hanren, Luo Yingpeng, et al. Ultrasound-assisted transesterification to produce biodiesel from waste frying oil[J]. <i>China Oils and Fats</i>, 2014, 39(11):52-56(in Chinese).
[17]  杨昱, 白靖文, 俞志刚. 超声辅助提取技术在天然产物提取中的应用[J]. 食品与机械, 2011, 27(1):170-174.
[18]  Yang Yu, Bai Jingwen, Yu Zhigang. Progress in ultrasound-assisted extraction in natural product[J]. <i>Food & Machinery</i>, 2011, 27(1):170-174(in Chinese).
[19]  李娜. 超声辅助提取苦菜单宁的工艺优化及其动力学研究[D]. 西安:陕西师范大学物理学与信息技术学院, 2012.
[20]  Li Na. Ultrasonic Assisted Extraction Sowthistle Tannins Process Optimization and Its Dynamics Research[D]. Xi′an:School of Physics and Information Technology, Shaanxi Normal University, 2012(in Chinese).
[21]  Hodnett M, Zeqiri B. Toward a reference ultrasonic cavitation vessel(Part 2):Investigating the spatial variation and acoustic pressure threshold of inertial cavitation in a 25 kHz ultrasound field[J]. <i>IEEE Transactions on Ultrasonics</i>, <i>Ferroelectrics and Frequency Control</i>, 2008, 55(8):1809-1822.
[22]  马大猷. 声学手册[M]. 北京:科学出版社, 1983.
[23]  Liu Liyan, Wen Jingjing, Yang Yang, et al. Measurement and visualization of ultrasonic cavitation field of MATLAB[J]. <i>Journal of Tianjin University</i>:<i>Science and Technology</i>, 2013, 46(12):1133-1138(in Chinese).
[24]  Xu Shaohua, Xiong Xianming. Development of the ultrasonic generator with frequency auto-tracing based on DDS[J]. <i>Chinese Journal of Scientific Instrument</i>, 2008, 29(8):406-409(in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133