全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

一种异步蚁群算法求解柔性作业车间调度问题
An Asynchronous Parallel Ant Colony Optimization for Flexible Job-Shop Scheduling Problem

DOI: 10.11784/tdxbz201603058

Keywords: 蚁群算法,柔性作业车间调度,异步并行,Petri网
ant colony optimization
,flexible job-shop scheduling,asynchronous parallel,Petri nets

Full-Text   Cite this paper   Add to My Lib

Abstract:

调度问题广泛存在于资源共享型系统中, 大多数的调度问题都属于混合整数规划问题. 大规模混合整数规划问题是计算科学领域中的NP-hard经典问题之一, 一般认为无法用精确计算求解. 生产调度是调度的一个重要分支, 是实现智能制造关键环节之一. 针对多品种变批量柔性作业车间调度问题, 以最小制造期为优化目标, 设计了一种基于Petri网的异步并行蚁群算法, 其中:提出了一种基于Petri网的步可达图构造方法, 用于蚁群算法解空间的构造; 探讨了传统蚁群算法搜索机制, 并给出了一种基于异步仿真时钟的蚁群并行搜索方法; 仿真结果表明, 多线程控制方法可以有效地避免算法的早熟收敛问题. 将所提出的算法应用于某安防件智能制造系统的柔性作业车间调度中, 降低了系统的总制造时间, 获得较好工程效果的同时验证了算法的有效性.
Scheduling problem widely exists in the systems of resource-sharing,mainly in the form of mixed integer programming. Large-scale mixed-integer programming problem is one of the classic NP-hard problems in the field of computational science,which cannot be solved through precise computation in general. Job-shop scheduling is a major sub-field of scheduling and a key aspect of intelligent manufacturing. Aiming at the flexible job-shop scheduling problems of multi-products and variety batch,a Petri nets-based asynchronous parallel ant colony optimization is proposed with the optimization target of minimizing the time consuming of manufacturing cycle. A Petri nets-based method of creating step-reachability graph is put forward,which is used for construction of search space of ant colony optimization. On the basis of discussing the search mechanism of traditional ant colony algorithm,a search method of asynchronous parallel for ant colony is presented based on asynchronous simulation clock. A multi-threaded control method for update of pheromone is used. Simulation results show that the multi-threaded control method can overcome the premature convergence effectively. The proposed approach is illustrated by a case of flexible job shop scheduling for an intelligent manufacturing system of defense and security facilities,through which solutions of high quality can be found quickly. In sum,the proposed optimization has obtained a good effect in engineering applications while the validity of optimization has been proved

References

[1]  Chen H, Ihlow J, Lehmann C. A genetic algorithm for flexible job-shop scheduling[C]//<i>Proceedings of the</i> 1999 <i>IEEE International Conference on Robotics and Automation.</i> Detroit, USA, 1999:1120-1125.
[2]  朱伟, 徐克林, 孙禹, 等. Petri网融合蚁群算法的物流配送路径规划[J]. 浙江大学学报:工学版, 2011, 45(12):2229-2234.
[3]  贾树晋. 热轧生产计划与负荷分配的多目标群智能算法研究[D]. 上海:上海交通大学电子信息与电气工程学院, 2012.
[4]  Chao D Y, Yu T H. The fundamental closed-form solution of control-related states of <i>k</i>th order S<sup>3</sup>PR system with left-side non-sharing resource places of Petri nets [J]. <i>International Journal of Control</i>, 2016, 89(1):169-178.
[5]  Chaudhry I A, Khan A A. A research survey:Review of flexible job shop scheduling techniques[J]. <i>International Transactions in Operational Research</i>, 2016, 23(3):551-591.
[6]  Zhu Wei, Xu Kelin, Sun Yu, et al. Logistics distribu-tion route planning with fusion algorithm of Petri net and ant colony[J]. <i>Journal of Zhejiang University</i>:<i>Engineering Science</i>, 2011, 45(12):2229-2234(in Chinese).
[7]  李京生. 面向多品种变批量生产的重构调度方法[D]. 北京:北京理工大学机械与车辆学院, 2014.
[8]  Wang K, Choi S H, Lu H. A hybrid estimation of distribution algorithm for simulation-based scheduling in a stochastic permutation flowshop[J]. <i>Computers & Industrial Engineering</i>, 2015, 90:186-196.
[9]  Sobeyko O, M?nch L. Heuristic approaches for scheduling jobs in large-scale flexible job shops[J]. <i>Computers & Operations Research</i>, 2016, 68:97-109.
[10]  Kuhpfahl J, Bierwirth C. A study on local search neighborhoods for the job shop scheduling problem with total weighted tardiness objective[J]. <i>Computers & Operations Research</i>, 2016, 66:44-57.
[11]  Noroozi A, Mokhtari H, Abadi I N K. Research on computational intelligence algorithms with adaptive learning approach for scheduling problems with batch processing machines[J]. <i>Neurocomputing</i>, 2013, 101:190-203.
[12]  宋存利. 生产调度问题及其智能优化算法研究[D]. 大连:大连理工大学控制科学与工程学院, 2011.
[13]  Song Cunli. Research on Production Scheduling Problem and Intelligent Optimization Algorithm[D]. Dalian:School of Control Science and Engineering, Dalian University of Technology, 2011(in Chinese).
[14]  Brandimarte P. Routing and scheduling in a flexible job shop by tabu search[J]. <i>Annals of Operations Research</i>, 1993, 41(3):157-183.
[15]  Liu H, Abraham A, Wang Z. A multi-swarm approach to multi-objective flexible job-shop scheduling problems [J]. <i>Fundamenta Informaticae</i>, 2009, 95(4):465-489.
[16]  Fattahi P, Mehrabad M S, Jolai F. Mathematical modeling and heuristic approaches to flexible job shop scheduling problems[J]. <i>Journal of Intelligent Manufacturing</i>, 2007, 18(3):331-342.
[17]  Kacem I, Hammadi S, Borne P. Approach by localization and multiobjective evolutionary optimization for flexible job-shop scheduling problems[J]. <i>IEEE Transactions on Systems</i>, <i>Man</i>, <i>and Cybernetics―Part C</i>:<i>Applications and Reviews</i>, 2002, 32(1):1-13.
[18]  Li Jingsheng. Reconfigurable Scheduling Method for Multi Product and Variant Volume Production[D]. Beijing:School of Mechannical Engineering, Beijing Institute of Technology, 2014(in Chinese).
[19]  Li Jingsheng, Wang Aimin, Tang Chengtong. Production planning in virtual cell of reconfiguration manufacturing system using genetic algorithm[J]. <i>International Journal of Advanced Manufacturing Technology</i>, 2014, 74:47-64.
[20]  Braune R, Z?pfel G. Shifting bottleneck scheduling for total weighted tardiness minimization:A computational evaluation of subproblem and re-optimization heuristics [J]. <i>Computers & Operations Research</i>, 2016, 66:130-140.
[21]  Jia Shujin. Research on Multi-objective Swarm Intelligence Algorithm for Hot Rolling Production Planning and Load Distribution[D]. Shanghai:School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 2012(in Chinese).
[22]  T’kindt V, Monmarché N, Tercinet F, et al. An ant colony optimization algorithm to solve a 2-machine bicriteria flowshop scheduling problem[J]. <i>European Journal of Operational Research</i>, 2002, 142(2):250-257.
[23]  Ho N B, Tay J C. GENACE:An efficient cultural algorithm for solving the flexible job-shop problem[C]//<i>Congress on Evolutionary Computation</i>. USA, 2004, 2:1759-1766.
[24]  Zribi N, Kacem I, El Kamel A, et al. Assignment and scheduling in flexible job-shops by hierarchical optimization[J]. <i>IEEE Transactions on Systems</i>, <i>Man</i>, <i>and Cybernetics</i>―<i>Part C</i>:<i>Applications and Reviews</i>, 2007, 37(4):652-661.
[25]  马佳. 改进免疫遗传算法及其在优化调度问题中的应用研究[D]. 沈阳:东北大学信息科学与工程学院, 2008.
[26]  Ma Jia. Research of Improved Immune Genetic Algorithms and Its Applications in Optimization Scheduling Problem[D]. Shenyang:College of Information Science and Engineering, Northeastern University, 2008(in Chinese).
[27]  纪光友. Petri网结构行为分析与结构辨识[D]. 武汉:华中科技大学自动化学院, 2014.
[28]  Ji Guangyou. Analysis of Structural Behavior and Structural Identification of Petri Nets[D]. Wuhan:School of Automation, Huazhong University of Science and Technology, 2014(in Chinese).
[29]  刘伟, 王太勇, 周明, 等. 基于蚁群算法的工艺路线生成及优化[J]. 计算机集成制造系统, 2010, 16(7):1378-1382.
[30]  Liu Wei, Wang Taiyong, Zhou Ming, et al. Generation and optimization of process routing based on ant colony algorithm[J]. <i>Computer Integrated Manufacturing Systems</i>, 2010, 16(7):1378-1382(in Chinese).
[31]  Liao T, Socha K, de Oca M, et al. Ant colony optimization for mixed-variable optimization problems[J]. <i>IEEE Transactions on Evolutionary Computation</i>, 2014, 18(4):503-518.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133