|
- 2018
基于群智感知和非监督式学习的室内定位指纹库构建算法
|
Abstract:
针对指纹法定位中的指纹库构建耗费大量人力和时间的问题, 提出了一种基于群智感知和非监督式学习的室内定位指纹库构建算法.首先利用群智感知的方式采集无线接入点的接收信号强度获取原始指纹数据集.然后针对原始指纹数据的冗余杂乱和指纹注释问题, 提出基于学习向量量化(LVQ)和多维标度(MDS)结合的一种新颖算法FLM来解决.最终有效构建室内定位指纹库.最后基于射线跟踪模型(ray-tracing)建立仿真实验场景, 仿真结果表明其指纹库建立效率得到显著提高, 应用于基本定位算法的定位误差80% 在2.6 m以下, 而且单次定位的计算量下降63% .
Aiming at solving the problem of massive manpower and time consumption in fingerprint database construction for fingerprint localization,an algorithm for indoor positioning fingerprint database construction based on crowdsensing and unsupervised learning was proposed in this paper. Firstly,the received signal strength was acquired from access points by crowdsensing,which is the original fingerprint data set. Then,to deal with the problem of data redundancy and fingerprint annotation of the original fingerprint data,a FLM-algorithm based on the combination of learning vector quantization(LVQ)and multidimensional scaling(MDS)was proposed. Finally,the construction of indoor positioning fingerprint database was effectively achieved. Based on ray-tracing,a simulation scenarios of the proposed algorithm was established. Simulation results show that the efficiency of the fingerprint database construction is improved greatly. 80% of localization error is lower than 2.6 m by appling to the basic localization algorithm,and the amount of localization calculation of the single position is reduced by 63%
[1] | 张明华. 基于WLAN的室内定位技术研究[D]. 上海:上海交通大学电子信息与电气工程学院, 2009. |
[2] | Zhang Minghua. Research on Indoor Positioning Technology Based on WLAN[D]. Shanghai:School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 2009(in Chinese). |
[3] | He S, Chan S H G . Wi-Fi fingerprint-based indoor positioning:recent advances and comparisons[J]. <i>IEEE Communications Surveys & Tutorials</i>, 2016, 18(1):466-490. |
[4] | Liu H, Darabi H, Banerjee P, et al. Survey of wireless indoor positioning techniques and systems[J]. <i>IEEE Transactions on Systems Man & Cybernetics Part C Applications & Reviews</i>, 2007, 37(6):1067-1080. |
[5] | Yang S, Dessai P, Verma M, et al. FreeLoc:Calibration-free crowdsourced indoor localization[C]// <i></i>2013 <i>Proceedings IEEE INFOCOM.<i> Turin, Italy, 2013:2481-2489. |
[6] | Ye Y, Wang B. Indoor radio map construction based on crowdsourced fingerprint splitting and fitting[C]// <i>Wireless Communications and Networking Conference</i>. San Francisco, CA, USA, 2017:1-6. |
[7] | Jung S H, Moon B C, Han D. Unsupervised learning for crowdsourced indoor localization in wireless networks[J]. <i>IEEE Transactions on Mobile Computing</i>, 2016, 15(11):2892-2906. |
[8] | Wang B, Chen Q, Yang L T, et al. Indoor smartphone localization via fingerprint crowdsourcing:Challenges and approaches[J]. <i>IEEE Wireless Communications</i>, 2016, 23(3):82-89. |
[9] | Swangmuang N, Krishnamurthy P. Location finger print analyses toward efficient indoor positioning[C]// <i>IEEE International Conference on Pervasive Computing and Communications</i>. Hong Kong, China, 2008:100-109. |
[10] | Wei N, Xiao W, Yue K T, et al. Fingerprint-MDS based algorithm for indoor wireless localization[C]// <i>IEEE International Symposium on Personal Indoor and Mobile Radio Communications</i>. Instanbul, Turkey, 2010:1972-1977. |
[11] | Gao Z, Ma Y, Liu K, et al. An indoor mlti-Tag cooperative localization algorithm based on NMDS for RFID [J]. <i>IEEE Sensors Journal</i>, 2017, 17(7):2120-2128. |
[12] | Yang C F, Wu B C, Ko C J. A ray-tracing method for modeling indoor wave propagation and penetration[J]. <i>IEEE Transactions on Antennas and Propagation</i>, 1998, 46(6):907-919. |
[13] | Ni L M, Liu Y, Lau Y C, et al. LANDMARC:Indoor location sensing using active RFID[J]. <i>Wireless Networks</i>, 2004, 10(6):701-710.</i></i></i></i> |
[14] | He S, Ji B, Chan S H G. Chameleon:Survey-free updating of a fingerprint database for indoor localization [J]. <i>IEEE Pervasive Computing</i>, 2016, 15(4):66-75. |
[15] | Wu C, Yang Z, Liu Y. Smartphones based crowdsourcing for indoor localization[J]. <i>IEEE Transactions on Mobile Computing</i>, 2015, 14(2):444-457. |
[16] | Luo C, Hong H, Chan M C. PiLoc:A self-calibrating participatory indoor localization system[C]// <i>IPSN-</i>14 <i>Proceedings of the<i> 13<i>th International Symposium on Information Processing in Sensor Networks</i>. Berlin, Germany, 2014:143-154. |
[17] | Zhang C, Subbu K P, Luo J, et al. GROPING:Geomagnetism and crowdsensing powered indoor navigation[J]. <i>IEEE Transactions on Mobile Computing</i>, 2015, 14(2):387-400. |
[18] | Ma Y, Dou Z, Jiang Q, et al. Basmag:An optimized HMM-based localization system using backward sequences matching algorithm exploiting geomagnetic information[J]. <i>IEEE Sensors Journal</i>, 2016, 16(20):7472-7482. |
[19] | Li X, Pahlavan K. Super-resolution TOA estimation with diversity for indoor geolocation[J]. <i>IEEE Transactions on Wireless Communications</i>, 2004, 3(1):224-234. |
[20] | Bahl P, Padmanabhan V N. RADAR:An in-building RF-based user location and tracking system[C]// 19<i>th Joint Conference of the IEEE Computer and Communications Societies</i>. Tel Aviv, Israel, 2000:775-784. |
[21] | Wu C, Yang Z, Liu Y, et al. WILL:Wireless indoor localization without site survey[J]. <i>IEEE Transactions on Parallel & Distributed Systems</i>, 2013, 24(4):839-848. |