全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

回转副测量安装位姿不确定性影响分析与评价
Analysis and Evaluation of Installation Uncertainty in Rotary Pair Measurement

DOI: 10.11784/tdxbz201803104

Keywords: 运动几何学,直纹面,不确定性,回转副,误差运动
kinematic geometry
,ruled surface,uncertainty,rotary pair,error motion

Full-Text   Cite this paper   Add to My Lib

Abstract:

将测量仪轴线矢量描述为直纹面的直母线, 直母线随回转轴一起误差运动, 其轨迹形成直纹面, 通过建立的直纹面几何模型分析测量仪安装位姿不确定性对测量结果影响, 并提出一种消除仪器安装位姿不确定性影响的评价新方法.定义了球面像误差和腰线误差去描述直纹面的误差运动范围, 并通过优化得到全局不变量.采用全局不变量对主轴误差运动进行评价具有唯一性, 可以剔除安装位姿不确定对测量结果的影响.通过Lion公司的双标准球测量仪实际测量得到主轴误差运动参数, 通过3次安装实验优化结果对比, 验证该方法的有效性.
The axis of two master balls is expressed as straight generatrix of a ruled surface. The straight generatrix traces a ruled surface along with the error motion of spindle. The paper presents a new ruled surface model to describe the error motion and analyze the influence of measuring equipment installation error on measurement results. Based on the analysis,a new method of evaluation is formed that can eliminate the influence of equipment installation error on measurement results. The spherical image error and the striction error are defined as parameters to describe the range of the error motion. The minimum spherical image error vector and the minimum waist line error vector are obtained by traversing the vectors on all the discrete points in the moving coordinate system. The influence of equipment installation error on measurement results can be eliminated by using the best position and attitude vector. The error motion measurement is obtained by actual measurement of the two master balls of Lion Corporation. The feasibility of the method is verified by three contrast tests

References

[1]  崔中, 文桂林, 赵子衡, 等. 基于区间数的高速磨床主轴系统的不确定性优化研究[J]. 湖南大学学报:自然科学版, 2010, 37(8):29-34.
[2]  Cui Zhong, Wen Guilin, Zhao Ziheng, et al. The uncertain structural optimization based on interval number program for the spindle system of high speed grinder[J]. <i>Journal of Hunan University</i>:<i>Natural Sciences</i>, 2010, 37(8):29-34(in Chinese).
[3]  Lin Qingfeng, Lin Shuwen. Influence and separation of set up errors of double ball bar on geometric error measurement[J]. <i>Tool Engineering</i>, 2014, 48(9):81-85(in Chinese).
[4]  Wang D, Wang W. <i>Kinematic Differential Geometry and Saddle Synthesis of Linkages</i>[M]. New York:John Wily & Sons, 2015.
[5]  Wang Delun, Wang Wei. <i>The Kinematic Differential</i> <i>Geometry and Saddle Synthesis of Linkages</i>[M]. Beijing:China Machine Press, 2015(in Chinese).
[6]  ASME B89. 3. 4―2010. <i>Axes of Rotation</i>:<i>Methods for Specifying and Testing</i>[M]. New York:ASME, 2010.
[7]  Cheng Yinbao, Chen Xiaohuai, Wang Hanbin, et al. Measurement uncertainty estimation and analysis based on accuracy theory[J]. <i>Journal of Electronic Measurement and Instrumentation</i>, 2016, 30(8):1175-1182(in Chinese).
[8]  陈晓怀, 王汉斌, 程银宝, 等. 基于测量不确定度的产品检验中误判率计算[J]. 中国机械工程, 2015, 26(14):1847-1850.
[9]  Chen Xiaohuai, Wang Hanbin, Cheng Yinbao, et al. Calculation of misjudgment probability in product tests based on measurement uncertainty[J]. <i>China Mechanical Engineering, </i>2015, 26(14):1847-1850(in Chinese).
[10]  艾烨霜, 沈永林. 顾及测量不确定性的水体悬浮物浓度遥感定量反演方法[J]. 光学学报, 2016, 36(7):10-20.
[11]  Anandan K P, Tulsian A S, Donmez A, et al. A technique for measuring radial error motions of ultra-high-speed miniature spindles used for micromachining[J]. <i>Precision Engineering</i>, 2012, 36(1):104-120.
[12]  陈衡, 胡秋, 许耀宇. 基于反转法的超精密气体主轴回转精度测量不确定度研究[J]. 组合机床与自动化加工技术, 2017(4):10-13.
[13]  Chen Heng, Hu Qiu, Xu Yaoyu. Uncertainty evaluation of aerostatic spindle rotation accuracy by Donaldson reversal method[J]. <i>Combined Machine Tool and Automatic Machining Technology</i>, 2017(4):10-13(in Chinese).
[14]  程银宝, 陈晓怀, 王汉斌, 等. 基于精度理论的测量不确定度评定与分析[J]. 电子测量与仪器学报, 2016, 30(8):1175-1182.
[15]  程银宝, 陈晓怀, 王汉斌, 等. CMM尺寸测量的不确定度评定模型研究[J]. 计量学报, 2016, 37(5):462-466.
[16]  Cheng Yinbao, Chen Xiaohuai, Wang Hanbin, et al. Research on uncertainty estimation modeI of CMM for size measurement[J]. <i>Acta Metrologica Sinica</i>, 2016, 37(5):462-466(in Chinese).
[17]  Ai Yeshuang, Shen Yonglin. Measurement uncertainty-aware quantitative remote sensing inversion to retrieve suspended matter concentration in inland water[J]. <i>Acta Optica Sinica</i>, 2016, 36(7):10-20(in Chinese).
[18]  武利生, 杨丽凤, 李元宗. CCD尺寸检测中安装误差对测量精度的影响[J]. 仪器仪表学报, 2005, 26(10):1093-1096.
[19]  Wu Lisheng, Yang Lifeng, Li Yuanzong. Effect of alignment error to measurement accuracy in CCD dimension measuring system[J]. <i>Chinese Journal of Scientific Instrument</i>, 2005, 26(10):1093-1096(in Chinese).
[20]  林清锋, 林述温. 球杆仪安装误差对测量误差的影响规律及其分离方法[J]. 工具技术, 2014, 48(9):81-85.
[21]  Wang D, Wang Z, Wu Y, et al. Invariant errors of discrete motion constrained by actual kinematic pairs[J]. <i>Mechanism and Machine Theory</i>, 2017, 119:74-90.
[22]  王德伦, 汪伟. 机构运动微分几何学分析与综合[M]. 北京:机械工业出版社, 2015.
[23]  ISO 13041-6:2009. Test Conditions for Numerically Controlled Turning Machines and Turning Centers-Part 6:Accuracy of a Finished Test Piece[S]. ISO, 2009.
[24]  ISO 10791-1:2015. Test Conditions for Machining Centers-Part 1:Geometric Tests for Machines with Horizontal Spindle[S]. ISO, 2015.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133