全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

基于负载选择的非线性刚度驱动器性能评价
Performance Evaluation of Load-Dependent Nonlinear Stiffness Actuator

DOI: 10.11784/tdxbz201803027

Keywords: 非线性刚度,柔顺驱动器,控制性能,仿真,试验
nonlinear stiffness
,compliant actuators,control performance,simulation,experiment

Full-Text   Cite this paper   Add to My Lib

Abstract:

恒定刚度的串联弹性驱动器(SEA)的控制性能受刚度的限制, 存在着系统安全性与带宽之间的矛盾.可变刚度驱动器(VSA)在一定程度上解决了高安全性与高控制带宽之间的矛盾, 但其采用的刚度调节电机增加了结构的复杂性.基于“小负载, 低刚度; 大负载, 高刚度”的人机交互策略的负载选择的非线性刚度驱动器(LDNSA)是一种新的具有良好应用前景的驱动方案.通过Simulink仿真和试验探讨了LDNSA在不同的刚度区间(不同的负载条件)的力矩控制性能, 并与不同刚度的SEA的控制性能进行了比较分析.结果表明:与SEA相比, 虽然LDNSA的力矩响应平稳性比低刚度的和高刚度SEA差, 但LDNSA在负载较小时具有高安全性的同时依然能保证高的控制带宽, 而负载较大时, LDNSA的控制带宽更高且力矩响应平稳性能增强.
The control performance of series elastic actuator(SEA)with constant stiffness is limited by stiffness leading to the contradiction between safety and bandwidth. Variable stiffness actuator(VSA)solves the contradiction between high safety and high control bandwidth in some degree,but the motor is employed to adjust stiffness complexes its structure. Considering the disadvantages of SEA and VSA,a load-dependent nonlinear stiffness actuator(LDNSA)was introduced to apply in the human robot interaction(HRI)based on the HRI strategy of“Small load,low stiffness; large load,high stiffness”. The torque control performance of LDNSA under different stiffness ranges/different loads was discussed through simulation and experiment and was compared with that of SEAs with different stiffnesses. It was obtained afterword that: Compared with SEA,although the stability of torque response of LDNSA is worse than SEAs with low stiffness and high stiffness,LDNSA achieves high control bandwidth along with high safety under small load,while LDNSA has higher bandwidth and better torque response stability under large load

References

[1]  Kong K, Bae J, Tomizuka M. A compact rotary series elastic actuator for human assistive systems[J]. <i>IEEE</i>/<i>ASME Transactions on Mechatronics</i>, 2012, 17(2):288-297.
[2]  Zinn M, Khatib O, Roth B, et al. A new actuation approach for human friendly robot design[J]. <i>International Symposium on Experimental Robotics S Angelo D’ischia I</i>, 2008, 1:379-398.
[3]  Awad M I, Gan D, Cempini M, et al. Modeling, design & characterization of a novel passive variable stiffness joint(pVSJ)[C]//<i>IEEE</i>/<i>RSJ International Conference on Intelligent Robots and Systems.<i> Daejeon, South Korea, 2016:323-329.
[4]  Jafari A, Tsagarakis N G, Caldwell D G. A novel intrinsically energy efficient actuator with adjustable stiffness(AwAS)[J]. <i>IEEE</i>/<i>ASME Transactions on Mechatronics</i>, 2012, 18(1):355-365.
[5]  Sergi F, O’Malley M K. On the stability and accuracy of high stiffness rendering in non-back drivable actuators through series elasticity[J]. <i>Mechatronics</i>, 2015, 26:64-75.
[6]  Lee Y F, Chu C Y, Xu J Y, et al. A humanoid robotic wrist with two-dimensional series elastic actuation for accurate force/torque interaction[J]. <i>IEEE</i>/<i>ASME Transactions on Mechatronics</i>, 2016, 21(3):1315-1325.</i></i></i></i></i></i></i></i></i></i>
[7]  Robinson D W, Pratt J E, Paluska D J, et al. Series elastic actuator development for a biomimetic walking robot[C]// <i>IEEE</i>/<i>ASME International Conference on Advanced Intelligent Mechatronics</i>. Atlanta, GA, USA, 1999:561-568.
[8]  Austin J, Schepelmann A, Geyer H. Control and evaluation of series elastic actuators with nonlinear rubber springs[C]// <i>IEEE</i>/<i>RSJ International Conference on Intelligent Robots and Systems.<i> Hamburg, Germany, 2015:6563-6568.
[9]  Schepelmann A, Geberth K A, Geyer H. Compact nonlinear springs with user defined torque-deflection profiles for series elastic actuators[C]//<i>IEEE International Conference on Robotics and Automation.<i> Hong Kong, China, 2014:3411-3416.
[10]  Accoto D, Carpino G, Sergi F, et al. Design and characterization of a novel high-power series elastic actuator for a lower limb robotic orthosis[J]. <i>International Journal of Advanced Robotic Systems</i>, 2013, 10(359):1-12.
[11]  Erler P, Beckerle P, Strah B, et al. Experimental comparison of nonlinear motion control methods for a variable stiffness actuator[C]//<i>Biomedical Robotics and Bio mechatronics.<i> Sao Paulo, Brazil, 2014:1045-1050.
[12]  Rodríguez A G, Chacón J M, Donoso A, et al. Design of an adjustable-stiffness spring:Mathematical modeling and simulation, fabrication and experimental validation[J]. <i>Mechanism & Machine Theory</i>, 2011, 46(12):1970-1979.
[13]  Tonietti G, Schiavi R, Bicchi A. Design and control of a variable stiffness actuator for safe and fast physical human/robot interaction[C]//<i>IEEE International Conference on Robotics and Automation</i>. Barcelona, Spain, 2005:526-531.
[14]  Sariyildiz E, Chen G, Yu H. An acceleration-based robust motion controller design for a novel series elastic actuator[J]. <i>IEEE Transactions on Industrial Electronics</i>, 2016, 63(3):1900-1910.
[15]  Paine N, Mehling J S, Holley J, et al. Actuator control for the NASA-JSC valkyrie humanoid robot:A decoupled dynamics approach for torque control of series elastic robots[J]. <i>Journal of Field Robotics</i>, 2015, 32(3):378-396.
[16]  Wolf S, Eiberger O, Hirzinger G. The DLR FSJ:Energy based design of a variable stiffness joint[C]// <i>IEEE International Conference on Robotics and Automation.<i> Shanghai, China, 2011:5082-5089.
[17]  Migliore S A, Brown E A, Deweerth S P. Novel nonlinear elastic actuators for passively controlling robotic joint compliance[J]. <i>Journal of Mechanical Design</i>, 2007, 129(4):406-412.
[18]  Lan S, Song Z. Design of a new nonlinear stiffness compliant actuator and its error compensation method [J]. <i>Journal of Robotics</i>, 2016, 2016:1-8.
[19]  Ruderman M, Iwasaki M. Control of nonlinear elastic joint robots using feed-forward torque decoupling[J]. <i>IFAC</i>, 2015, 48(11):137-142.
[20]  Wang F, Liang C, Tian Y, et al. Design and control of a compliant microgripper with a large amplification ratio for high-speed micro manipulation[J]. <i>IEEE</i>/<i>ASME Transactions on Mechatronics</i>, 2016, 21(3):1262-1271.
[21]  Losey D P, Erwin A, Mcdonald C G, et al. A time-domain approach to control of series elastic actuators:Adaptive torque and passivity-based impedance control [J]. <i>IEEE</i>/<i>ASME Transactions on Mechatronics</i>, 2016, 21(4):2085-2096.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133