|
- 2018
语义匹配性及刺激间隔对视听双模态脑控字符输入系统的影响
|
Abstract:
近年来, 基于事件相关电位(ERP)的脑控字符输入系统的研究越来越多, 视觉与听觉的多模态刺激范式作为一种新型的复合刺激越来越受到关注.然而, 研究视听双模态刺激的脑控字符输入系统性能因素的文章却很少报道.本研究旨在初步探究视听觉刺激的语义匹配性以及刺激间隔(SOA)对视听双模态脑控字符输入系统的影响.为此, 本研究设计了语义匹配、语义失配两种刺激范式, 每种范式又设置两种不同的刺激间隔(200 ms或400 ms).10名健康被试参与了本实验, 通过对比事件相关电位特征、可分性及分类正确率发现视听觉匹配性、刺激间隔以及两者交互作用对非目标刺激大脑反应、目标刺激大脑反应及其可分性都有显著性影响, 且视听觉的匹配性对视听联合脑控字符输入系统分类正确率影响显著, 但是不同刺激间隔脑机接口分类正确率之间并无显著性差异.本研究的结果能够为基于双模态刺激脑控字符输入系统的范式选择和优化提供一定的指导意见.
In recent years,researches on event-related potential(ERP)-based brain computer interface(BCI)speller have become increasingly popular. Visual and auditory based multimodal stimuli paradigms as new paradigms have attracted more and more attention. Studies on the effect of experimental parameters on system performance of visual-auditory stimuli based BCI speller have rarely been reported. This study aims at investigating the effects of audiovisual semantic congruency and stimulus-onset asynchrony(SOA)on audiovisual bimodal stimuli based BCI speller. Therefore,two audiovisual paradigms(semantic congruent and semantic incongruent)with two different SOAs(200 ms and 400 ms)were adopted,and 10 healthy subjects participated in the experiment. ERP,discrimination of targets and non-targets,and classification accuracy were analyzed. Results indicated that semantic congruency,SOA and the interaction factors have significant effect on the brain response and discrimination of target and non-target stimuli. Semantic congruency also has significant effect on system classification accuracy,whereas no significant difference was found on factor SOA. This study could provide a theoretical guidance for the design of new paradigms on visual and auditory based bimodal BCI speller
[1] | Walter W, Cooper R, Aldridge V J, et al. Contingent negative variation:An electric sign of sensori-motor association and expectancy in the human brain[J]. <i>Nature</i>, 1964, 203(4943):380-384. |
[2] | Fabiani Monica, Gratton Gabriele, Karis Demetrios, et al. Definition, identification, and reliability of measurement of the P300 component of the event-related brain potential[J]. <i>Advances in Psychophysiology</i>, 1987, 2(S1):1-78. |
[3] | Farwell Lawrence Ashley, Donchin Emanuel. Talking off the top of your head:Toward a mental prosthesis utilizing event-related brain potentials[J]. <i>Electro-encephalography and Clinical Neurophysiology</i>, 1988, 70(6):510-523. |
[4] | Brunner P, Joshi S, Briskin S, et al. Does the P300 speller depend on eye gaze?[J]. <i>Journal of Neural Engineering</i>, 2010, 7(5):056013. |
[5] | An Xingwei, H?hne Johannes, Ming Dong, et al. Exploring combinations of auditory and visual stimuli for gaze-independent brain-computer interfaces[J]. <i>PloS One</i>, 2014, 9(10):e111070. |
[6] | Wang Fei, He Yanbin, Pan Jiahui, et al. A novel audiovisual brain-computer interface and its application in awareness detection[J]. <i>Scientific Reports</i>, 2015, 5:9962. |
[7] | Chang Moonjeong, Nishikawa Nozomu, Cai Zhenyu, et al. Psychophysical responses comparison in spatial visual, audiovisual, and auditory BCI-spelling paradigms [C]//<i>Joint</i>, <i>International Conference on Soft Computing and Intelligent Systems</i>. Kobe, Japan, 2154-2157. |
[8] | Chang M, Nishikawa N, Struzik Z R, et al. Comparison of P300 responses in auditory, visual and audiovisual spatial speller BCI paradigms[J]. <i>Computer Science</i>, 2013. |
[9] | McFarland D J, Sarnacki W A, Townsend G, et al. The P300-based brain-computer interface(BCI):Effects of stimulus rate[J]. <i>Clinical Neurophysiology</i>, 2011, 122(4):731-737. |
[10] | H?hne Johannes, Krenzlin Konrad, D?hne Sven, et al. Natural stimuli improve auditory BCIs with respect to ergonomics and performance[J]. <i>Journal of Neural Engineering</i>, 2012, 9(4):045003. |
[11] | Riccio Angela, Mattia Donatella, Simione L, et al. Eye-gaze independent EEG-based brain-computer interfaces for communication[J]. <i>Journal of Neural Engineering</i>, 2012, 9(4):045001. |
[12] | Belitski A, Farquhar J, Desain P. P300 audio-visual speller[J]. <i>Journal of Neural Engineering</i>, 2011, 8(2):025022. |
[13] | Chang Chih-Chung, Lin Chih-Jen. LIBSVM:A library for support vector machines[J]. <i>ACM Transactions on Intelligent Systems and Technology</i>(<i>TIST</i>), 2011, 2(3):1-27. |
[14] | Efron Bradley. <i>Bootstrap Methods</i>:<i>Another Look at the Jackknife<i> [M]. New York, USA:Springer, 1992. |
[15] | Hesterberg T, Moore D S, Monaghan S, et al. Bootstrap methods and permutation tests[J]. <i>Introduction to the Practice of Statistics</i>, 2005, 5:1-70.</i></i></i></i> |
[16] | Treder M S, Blankertz B. (C)overt attention and visual speller design in an ERP-based brain-computer interface [J]. <i>Behavioral and Brain Functions</i>, 2010, 6(1):6-28. |
[17] | Treder Matthias Sebastian, Schmidt Nico Maurice, Blankertz Benjamin. Gaze-independent brain-computer interfaces based on covert attention and feature attention [J]. <i>Journal of Neural Engineering</i>, 2011, 8(6):066003. |
[18] | Guo Jing, Gao Shangkai, Hong Bo. An auditory brain-computer interface using active mental response[J]. <i>IEEE Transactions on Neural Systems and Rehabilitation Engineering</i>, 2010, 18(3):230-235. |
[19] | Lu Jessica, Speier William, Hu Xiao, et al. The effects of stimulus timing features on P300 speller performance [J]. <i>Clinical Neurophysiology</i>, 2013, 124(2):306-314. |
[20] | 安兴伟. 基于数字拼写的视-听联合刺激诱发 ERP 研究[D]. 天津:天津大学精密仪器与光电子工程学院, 2010. |
[21] | Precision Instrument and Opto-Electronics Engineering, Tianjin University, 2010(in Chinese). |
[22] | An Xingwei, Ming Dong, Sterling Douglas, et al. Optimizing visual-to-auditory delay for multimodal BCI speller[C]//<i>Proceedings of the<i> 2014 36<i>th Annual International Conference of the IEEE Engineering in Medicine and Biology Society</i>. Chicago, USA, 2014:1226-1229. |
[23] | Wolpaw J, Wolpaw E W. <i>Brain-Computer Interfaces</i>:<i>Principles and Practice</i>[M]. USA:OUP, 2012. |
[24] | Wolpaw J R, Birbaumer N, Heetderks W J, et al. Brain-computer interface technology:A review of the first international meeting[J]. <i>IEEE Transactions on Rehabilitation Engineering</i>, 2000, 8(2):164-173. |
[25] | Mak J N, Wolpaw J R. Clinical applications of brain-computer interfaces:Current state and future prospects [J]. <i>IEEE Reviews in Biomedical Engineering</i>, 2009, 2(1):187-199. |
[26] | Brouwer Anne-Marie, van Erp Jan B F. A tactile P300 brain-computer interface[J]. <i>Frontiers in Neuro-science</i>, 2010, 4(19):1-11. |
[27] | Aloise F, Lasorsa I, Schettini F, et al. Multimodal stimulation for a P300-based BCI[J]. <i>International Journal of Bioelectromagnetism</i>, 2007, 9(3):128-130. |
[28] | An Xingwei. Research on Event-Related Potentials (ERP)Evoked by Visual-Auditory Cross Stimulation Based on Number Speller[D]. Tianjin:School of |