全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

CFRP加固砌体填充墙抗燃气爆炸泄爆荷载的优化设计及动力响应
Optimization Design and Dynamic Responses of CFRP Reinforced Masonry Infilled Wall Subjected to Vented Gas Explosion

DOI: 10.11784/tdxbz201706061

Keywords: CFRP,燃气泄爆爆炸,砌体填充墙,拓扑优化,动力响应
CFRP
,vented gas explosion,masonry infilled wall,topology optimization,dynamic response

Full-Text   Cite this paper   Add to My Lib

Abstract:

CFRP条带已广泛应用于结构构件的外贴抗爆加固.为了进一步提高砌体填充墙在泄爆荷载作用下的抗爆性能, 同时控制加固材料成本, 基于Hyperworks中的OptiStruct平台对典型砌体填充墙的CFRP外贴抗爆加固方案进行了拓扑优化, 提出了一套优化加固方案.基于优化方案, 建立了CFRP外贴加固砌体填充墙的精细化数值分析模型, 模型的可靠性得到了试验结果的验证.基于数值模型, 进一步讨论了燃气爆炸泄爆荷载作用下不同加固方式对单向和双向填充墙体动力响应和破坏模式的影响.结果表明, 相较于传统方案, CFRP优化加固方案能显著提高砌体填充墙的抗爆能力; 优化加固的单向墙呈窄X型破坏形式, 优化加固的双向墙发生了边界剪切破坏.
CFRP laminates are extensively used to externally reinforce the structural components to resist blast loads. To further increase the blast resistance of frame infill masonry wall subjected to vented gas explosion, and to reduce the retrofitting cost, a topology optimization design of retrofitting scheme on typical masonry infilled wall was conducted in the manuscript, and an optimization scheme was finally proposed. Based on the optimization scheme, a fine numerical model of CFRP externally reinforced masonry wall was developed, and its reliability was validated by the test data. The influences of different reinforcement schemes on the dynamic responses and failure modes of masonry walls were discussed on the base of the developed numerical model. Compared to traditional scheme, it is indicated that the proposed optimization scheme is able to significantly increase the blast resistance of the reinforced masonry wall. A typical narrow X type failure mode was observed on the optimally reinforced one-way wall. As for the optimally reinforced two-way wall, shear failure always occurred at the four fixed boundaries

References

[1]  Chen Li, Fang Qin, Fan Junyu, et al. Responses of masonry infill walls retrofitted with CFRP, steel mesh and steel bars to blast loadings[J]. <i>Advances in Structural Engineering</i>, 2014, 17(6):817-836.
[2]  Shi Yanchao, Xiong Wei, Li Zhongxian, et al. Experimental studies on the local damage and fragments of unreinforced masonry walls under close-in explosions [J]. <i>International Journal of Impact Engineering</i>, 2016, 90:122-131.
[3]  Chen Li, Fang Qin, Jiang Chong, et al. Response and damage level of confined masonry walls to blast[J]. <i>Disaster Advances</i>, 2013, 6(S4):380-394.
[4]  Guo Zhanggen, Cao Shuangyin, Wang Anbao, et al. Dynamic response analysis and test study on FRP strengthened RC slabs subjected to blast loading[J]. <i>Engineering Mechanics</i>, 2016, 33(3):120-127(in Chinese).
[5]  Michell A G M. The limits of economy of material in frame structure[J]. <i>Philosophical Magazine</i>, 1904, 8(6):589-597.
[6]  Dorn W S, Gomory R E, Greenberg H J. Automatic design of optimal structures[J]. <i>Journal de Mecanique</i>, 1964, 3:25-52.
[7]  Martin P B, Noboru K. Generating optimal topology in structural design using a homogenization method[J]. <i>Computer Methods in Applied Mechanics and Engineering</i>, 1988, 71:197-224.
[8]  Matteo B, Gabriele M, Alberto T. Design of the optimal fiber-reinforcement for masonry structures via topology optimization[J]. <i>International Journal of Solids and Structures</i>, 2013, 50:2087-2106.
[9]  Stephen W T, Edward M W. A general theory of strength for anisotropic materials[J]. <i>Journal of Composite Materials</i>, 1971, 5(1):58-80.
[10]  Meng Yiping, Li Bo, Huang Junqi, et al. Structure design of new airtight blast door based on topology and shape optimization method[J]. <i>Journal of Hefei University of Technology</i>:<i>Natural Science</i>, 2015, 38(8):1109-1113(in Chinese).
[11]  Idris K, Murat Y, Arun S. Designing foam filled sandwich panels for blast mitigation using a hybrid evolutionary optimization algorithm[J]. <i>Composite Structures</i>, 2016, 158:72-82.
[12]  Jansson N, Wakeman W D, Manson J A E. Optimization of hybrid thermoplastic composite structures using surrogate models and genetic algorithms[J]. <i>Composite Structures</i>, 2007, 80:21-31.
[13]  Robert H, Jeeves T A.“Direct Search”solution of numerical and statistical problems[J]. <i>Journal of the ACM</i>, 1961, 8(2):212-229.
[14]  陈力, 方秦, 还毅, 等. 爆炸荷载作用下钢筋混凝土梁板结构的面力效应[J]. 工程力学, 2010, 27(8):156-163.
[15]  Chen Li, Fang Qin, Huan Yi, et al. Membrane action on reinforced concrete beam-slab structures subjected to blast loads[J]. <i>Engineering Mechanics</i>, 2010, 27(8):156-163(in Chinese).
[16]  韩永利, 陈洋, 陈龙珠. 基于LS-DYNA的墙体抗燃气爆炸能力数值分析[J]. 防灾减灾工程学报, 2010, 30(3):298-302.
[17]  Han Xiao. The Dynamic Response of Brick Masonry Wall Subjected to Gas Explosion Load[D]. Xi’an:Chang’an University, 2012(in Chinese).
[18]  Bao Qi, Fang Qin, Zhang Yadong, et al. Effects of gas concentration and venting pressure on overpressure transients during vented explosion of methane-air mixtures[J]. <i>Fuel</i>, 2016, 175:40-48.
[19]  郑康, 陈力, 方秦, 等. CFRP布/树脂胶复合条带的抗拉力学性能[J]. 高压物理学报, 2017, 31(6):794-802.
[20]  Zheng Kang, Chen Li, Fang Qin, et al. Tensile properties of CFRP/Epoxy gel composite strip[J]. <i>Chinese Journal of High Pressure Physics</i>, 2017, 31(6):794-802(in Chinese).
[21]  Sarah L O, Vincent P C, Jared K M, et al. Analysis of CFRP strengthened reinforced concrete structural components subjected to close-in blasts[J]. <i>International Journal of Protective Structures</i>, 2013, 4(4):467-483.
[22]  郭樟根, 曹双寅, 王安宝, 等. 化爆作用下 FRP 加固 RC 板的试验研究及动力响应分析[J]. 工程力学, 2016, 33(3):120-127.
[23]  Matteo B, Gabriele M, Alberto T. Simple topology optimization strategy for the FRP reinforcement of masonry walls in two-way bending[J]. <i>Computers and Structures</i>, 2014, 138:86-101.
[24]  Matteo B, Gabriele M. Optimal FRP reinforcement of masonry walls out-of-plane loaded:A combined homogenization-topology optimization approach complying with masonry strength domain[J]. <i>Computers and Structures</i>, 2015, 153:49-74.
[25]  孟益平, 李博, 黄俊旗, 等. 基于拓扑优化和形状优化技术的新型防爆密闭门结构设计[J]. 合肥工业大学学报:自然科学版, 2015, 38(8):1109-1113.
[26]  汪明. 爆炸荷载作用下钢结构损伤机理及砌体墙破碎过程研究[D]. 天津:天津大学建筑工程学院, 2010.
[27]  韩笑. 燃气爆炸荷载下砖砌墙体的动力响应研究[D]. 西安:长安大学, 2012.
[28]  张正威, 宋二祥, 陆新征, 等. 核爆冲击波作用下空心砌块墙对主体结构的作用[J]. 工程力学, 2008, 25(5):73-78.
[29]  Zhang Zhengwei, Song Erxiang, Lu Xinzheng, et al. Effects of concrete masonry walls on structures under nuclear blast loadings[J]. <i>Engineering Mechanics</i>, 2008, 25(5):73-78(in Chinese).
[30]  Mokhtari M, Alavi Nia A. The application of CFRP to strengthen buried steel pipelines against subsurface explosion[J]. <i>Soil Dynamics and Earthquake Engineering</i>, 2016, 87:52-62.
[31]  方秦, 还毅, 陈力, 等. 应变速率型RC梁柱显式分析单元及其在ABAQUS软件中的实现[J]. 工程力学, 2013, 30(5):49-55.
[32]  Fang Qin, Huan Yi, Chen Li, et al. The realization of explicit analytical model of rate-dependent fiber beam-column element in ABAQUS[J]. <i>Engineering Mech-anics</i>, 2013, 30(5):49-55(in Chinese).
[33]  Mlejnek H P, Schirrmacher R. An engineer’s approach to optimal material distribution and shape finding[J]. <i>Computer Methods in Applied Mechanics and Engineering</i>, 1993, 106(1/2):1-26.
[34]  Wang Ming. Damage Mechanism of Steel Structures and Fragmentation Process of Masonry Walls Under Blast Loading[D]. Tianjin:School of Civil Engineering, Tianjin University, 2010(in Chinese).
[35]  Han Yongli, Chen Yang, Chen Longzhu. Simulation on anti-blast ability of masonry wall under gas explosion load based on LS-DYNA[J]. <i>Journal of Disaster Prevention and Mitigation Engineering</i>, 2010, 30(3):298-302(in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133