全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

联合TOA和DOA的浅海多径定位算法
Joint TOA and DOA Localization Algorithm in Shallow Ocean Multipath Environment

DOI: 10.11784/tdxbz201703045

Keywords: 非均匀媒质,多径,声音速度剖面,费马原理,虚拟节点
inhomogeneous medium
,multipath,sound speed profile,Fermat’s principle,virtual node

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对海水媒质分布不均匀的特性, 本文提出了一种在非均匀媒质中联合到达时间(TOA)和到达角度(DOA)浅海多径环境下的定位算法.该算法不仅能够克服声速变化引起的路径弯曲问题, 还可以减少海水流动对节点拓扑结构产生的影响.首先分别以海面和海底为反射面建立锚节点的虚拟节点(VN), 把多径环境下的非视距(NLOS)问题转化为视距(LOS)问题, 然后根据声速剖面(SSP)利用费马原理获得声波曲线路径的表达式.又由于海面、海底形状的不规则性, 信号在反射点发生散射现象, 因此将反射点当作分布式信源, 利用散射信号中心波达方向作为DOA, 平均波达时间作为TOA.最后利用到达时间和到达角度估计目标的位置参数.仿真结果表明, 本方法在定位精度和鲁棒性等方面优于传统的直线传输模型.
To overcome the problem caused by the inhomogeneous water medium,a joint time-of-arrival(TOA) and direction-of-arrival (DOA) localization algorithm considering the inhomogeneous water medium in shallow ocean multipath environment is proposed. This algorithm can not only avoid the slanted path induced by the various sound speeds,but also reduce the influence of dynamic underwater network topology. Firstly,the virtual node (VN) of the anchor node was set up based on the surface and the bottom of the sea to convert the non-line-of-sight (NLOS) problem into a line-of-sight (LOS) problem. Then,according to the known sound speed profile (SSP),the numerical path of signal was derived by using Fermat’s principle. Furthermore,due to the irregularity of sea surface and seabed,the signal was scattered at the reflection point. So the reflection point was regarded as a distributed source,and the central angle and the average arrival time was regarded as DOA and TOA,respectively. Finally,the location parameter of target was estimated by TOA and DOA. The simulation results indicate that the proposed method is superior to conventional straight line propagation model in location accuracy and robustness

References

[1]  黎作鹏, 蔡绍滨, 张菁, 等. 水声传感器网络节点定位技术综述[J]. 小型微型计算机系统, 2012, 33(3):12-17.
[2]  Liu J, Wang Z, Cui J H, et al. A joint time synchronization and localization design for mobile underwater sensor networks[J]. <i>IEEE Transactions on Mobile Computing</i>, 2016, 15(3):530-543.
[3]  Li Zuopeng, Cai Shaobin, Zhang Jing, et al. Survey on node localization technology of underwater acoustic sensor networks[J]. <i>Journal of Chinese Computer Systems</i>, 2012, 33(3):12-17(in Chinese).
[4]  Tan H P, Diamant R, Seah W K G, et al. A survey of techniques and challenges in underwater localization[J]. <i>Ocean Engineering</i>, 2011, 38(14/15):1663-1676.
[5]  Akyildiz I F, Pompili D, Melodia T. Underwater acoustic sensor networks: Research challenges[J]. <i>Ad Hoc Networks</i>, 2005, 3(3):257-279.
[6]  Ameer P M, Jacob L. Localization using ray tracing for underwater acoustic sensor networks[J]. <i>IEEE Communications Letters</i>, 2010, 14(10):930-932.
[7]  Ramezani H, Jamali-Rad H, Leus G. Target localization and tracking for an isogradient sound speed profile [J]. <i>IEEE Transactions on Signal Processing</i>, 2013, 61(6):1434-1446.
[8]  Wang Yongliang, Chen Hui, Peng Yingning, et al. <i>Theory and Algorithm of Spatial Spectrum Estimation</i> [M]. Beijing:Tsinghua University Press, 2004(in Chinese).
[9]  Kim E, Lee S, Kim C, et al. Floating beacon-assisted 3-D localization for variable sound speed in underwater sensor networks[C]//<i>Sensors</i>. Basel, Switzerland, 2010:682-685.</i></i>
[10]  Stojanovic M, Preisig J. Underwater acoustic communication channels:Propagation models and statistical characterization[J]. <i>IEEE Communications Magazine</i>, 2009, 47(1):84-89.
[11]  Cheng W, Teymorian A Y, Ma L, et al. Underwater localization in sparse 3D acoustic sensor networks [C]//<i>The<i> 27<i>th Conference on Computer Communica-tions</i>. Arizona, USA, 2008:236-240.
[12]  Yuan Y X, Carter C, Salt J E. Near-optimal range and depth estimation using a vertical array in a correlated multipath environment[J]. <i>IEEE Transactions on Signal Processing</i>, 2000, 48(2):317-330.
[13]  Abdi A, Guo H. Signal correlation modeling in acoustic vector sensor arrays[J]. <i>IEEE Transactions on Signal Processing</i>, 2009, 57(3):892-903.
[14]  Emokpae L E, Dibenedetto S, Potteiger B, et al. UREAL:Underwater reflection-enabled acoustic-based localization[J]. <i>IEEE Sensors Journal</i>, 2014, 14(11):3915-3925.
[15]  Han G, Zhang C, Shu L, et al. Impacts of deployment strategies on localization performance in underwater acoustic sensor networks[J]. <i>IEEE Transactions on Industrial Electronics</i>, 2015, 62(3):1725-1733.
[16]  Ramezani H, Leus G. Accurate ranging in a stratified underwater medium with multiple isogradient sound speed profile layers[J]. <i>IFAC Proceedings</i>, 2012, 45(5):146-151.
[17]  Casalino G, Turetta A, Simetti E, et al. RT 2:A real-time ray-tracing method for acoustic distance evaluations among cooperating AUVs[C]//<i>Oceans</i>. Sydney, Austra-lia, 2010:1-8.
[18]  Berger C R, Zhou S, Willett P, et al. Stratification effect compensation for improved underwater acoustic ranging[J]. <i>IEEE Transactions on Signal Processing</i>, 2008, 56(8):3779-3783.
[19]  Poursheikhali S, Zamiri-Jafarian H. Ranging in underwater wireless sensor network:Received signal strength approach[C]//<i>Wireless Communications and Networking Conference</i>. Doha, Qatar, 2016:1-6.
[20]  Zhang B, Wang H, Xu T, et al. Received signal strength-based underwater acoustic localization considering stratification effect [C]// <i>Oceans</i>. Shanghai, China. 2016:1-8.
[21]  Yu J, Zhang L, Liu K. Coherently distributed wideband LFM source localization[J]. <i>Signal Processing Letters</i> <i>IEEE</i>, 2015, 22(4):504-508.
[22]  王永良, 陈辉, 彭应宁, 等. 空间谱估计理论与算法[M]. 北京:清华大学出版社, 2004.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133