|
- 2018
人、猪和鸡源SAMHD1蛋白的酶活性研究
|
Abstract:
SAMHD1蛋白是一种天然免疫限制因子, 利用其dNTP水解酶活性或核酸酶活性抑制病毒的复制, 具有广谱抗病毒功能.利用生物信息学分析该蛋白家族序列保守性, 并借助HPLC层析色谱分析与酶活性测定和酶标仪方法, 对人源、猪源和鸡源三物种SAMHD1蛋白的酶活性进行了比较.比对发现SAMHD1蛋白在活性空腔、变构位点及磷酸化位点等处序列上具有高度的保守性; 而且发现猪源和鸡源SAMHD1蛋白同样具有dNTP水解酶和核酸酶活性; 3种蛋白中, 人源SAMHD1蛋白dNTP水解酶活性最高, 猪源蛋白核酸酶活性最低.这一结果为研究SAMHD1蛋白家族的结构功能关系及为畜牧业优良品种的开发提供启示.
Sterile α-motif/histidine-aspartate domain-containing protein 1(SAMHD1),an innate immunological factor,can restrict viral replication by using its deoxynucleotide triphosphohydrolase(dNTPase)or nuclease activities,thus having a broad spectrum of antiviral functions. The sequence conservativeness of human,porcine,and chicken SAMHD1s was analyzed by bioinformatics,and their enzymatic activities were compared by using high performance liquid chromatography(HPLC) and a fluorescent-based enzymatic assay. It is found that the allosteric,nucleotide binding,and phosphorylation sites of SAMHD1 were highly conservative in sequence. Although all the SAMHD1s from the three different species had dNTPase and nuclease activities,they did show difference in the measured activities. Among them,human SAMHD1 had the highest dNTPase activity,and the porcine SAMHD1 had the lowest nuclease activity. This study provides information for understanding SAMHD1 structure-activity relationships and the development of new breeds in the livestock industry
[1] | Beloglazova N, Flick R, Tchigvintsev A, et al. Nuclease activity of the human SAMHD1 protein implicated in the Aicardi-Goutieres syndrome and HIV-1 restriction[J]. <i>J Biol Chem</i>, 2013, 288(12):8101-8110. |
[2] | Tungler V, Staroske W, Kind B, et al. Single-stranded nucleic acids promote SAMHD1 complex formation[J]. <i>J Mol Med</i>(<i>Berl</i>), 2013, 91(6):759-770. |
[3] | Davis A S, Taubenberger J K, Bray M. The use of nonhuman primates in research on seasonal, pandemic and avian influenza, 1893-2014[J]. <i>Antiviral Res</i>, 2015, 117(1):75-98. |
[4] | Sommer A F, Riviere L, Qu B, et al. Restrictive influence of SAMHD1 on Hepatitis B virus life cycle[J]. <i>Sci Rep</i>, 2016, 6(1):26616-26629. |
[5] | Jermy A. Viral infection:SAMHD1 cuts the power to HIV-1[J]. <i>Nat Rev Microbiol</i>, 2012, 10(4):237-245. |
[6] | Yan J, Kaur S, Delucia M, et al. Tetramerization of SAMHD1 is required for biological activity and inhibition of HIV infection[J]. <i>J Biol Chem</i>, 2013, 288(15):10406-10417. |
[7] | Ryoo J, Choi J, Oh C, et al. The ribonuclease activity of SAMHD1 is required for HIV-1 restriction[J]. <i>Nat Med</i>, 2014, 20(8):936-941. |
[8] | Choi J, Ryoo J, Oh C, et al. SAMHD1 specifically restricts retroviruses through its RNase activity[J]. <i>Retrovirology</i>, 2015, 12(1):46-57. |
[9] | Arnold L H, Groom H C, Kunzelmann S, et al. Phospho-dependent regulation of SAMHD1 oligomerisation couples catalysis and restriction[J]. <i>PLoS Pathog</i>, 2015, 11(10):1-30. |
[10] | Tang C, Ji X, Wu L, et al. Impaired dNTPase activity of SAMHD1 by phosphomimetic mutation of Thr-592[J]. <i>J Biol Chem</i>, 2015, 290(44):26352-26359. |
[11] | Yan J, Hao C, Delucia M, et al. CyclinA2-cyclin-dependent kinase regulates SAMHD1 protein phosphohydrolase domain[J]. <i>J Biol Chem</i>, 2015, 290(21):13279-13292. |
[12] | Hrecka K, Hao C, Gierszewska M, et al. Vpx relieves inhibition of HIV-1 infection of macrophages mediated by the SAMHD1 protein[J]. <i>Nature</i>, 2011, 474(7353):658-661. |
[13] | Laguette N, Sobhian B, Casartelli N, et al. SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx[J]. <i>Nature</i>, 2011, 474(7353):654-657. |
[14] | Oberstrass F C, Lee A, Stefl R, et al. Shape-specific recognition in the structure of the Vts1p SAM domain with RNA[J]. <i>Nat Struct Mol Biol</i>, 2006, 13(2):160-167. |
[15] | Kapgate S S, Barbuddhe S B, Kumanan K. Next generation sequencing technologies:Tool to study avian virus diversity[J]. <i>Acta Virologica</i>, 2015, 59(1):3-13. |
[16] | Kim C A, Gingery M, Pilpa R M, et al. The SAM domain of polyhomeotic forms a helical polymer[J]. <i>Nat Struct Biol</i>, 2002, 9(6):453-457. |
[17] | Green J B, Gardner C D, Wharton R P, et al. RNA recognition via the SAM domain of Smaug[J]. <i>Molecular Cell</i>, 2003, 11(6):1537-1548. |
[18] | Qiao F, Bowie J U. The many faces of SAM[J]. <i>Sci STKE</i>, 2005, 3(1):286-295. |
[19] | Oussenko I A, Sanchez R, Bechhofer D H. Bacillus subtilis YhaM, a member of a new family of 3’-to-5’ exonucleases in gram-positive bacteria[J]. <i>Journal of Bacteriology</i>, 2002, 184(22):6250-6259. |
[20] | Vorontsov II, Minasov G, Kiryukhina O, et al. Characterization of the deoxynucleotide triphosphate triphosphohydrolase(dNTPase)activity of the EF1143 protein from Enterococcus faecalis and crystal structure of the activator-substrate complex[J]. <i>J Biol Chem</i>, 2011, 286(38):33158-33166. |
[21] | Yang S, Shan T, Zhou Y, et al. Molecular cloning and characterizations of porcine SAMHD1 and its roles in replication of highly pathogenic porcine reproductive and respiratory syndrome virus[J]. <i>Dev Comp Immunol</i>, 2014, 47(2):234-246. |
[22] | Baldauf H M, Pan X, Erikson E, et al. SAMHD1 restricts HIV-1 infection in resting CD4(+)T cells[J]. <i>Nat Med</i>, 2012, 18(11):1682-1687. |
[23] | Garner M G, Whan I F, Gard G P, et al. The expected economic impact of selected exotic diseases on the pig industry of Australia[J]. <i>Rev Sci Tech</i>, 2001, 20(3):671-685. |
[24] | Nieuwenhuis N, Duinhof T F, van Nes A. Economic analysis of outbreaks of porcine reproductive and respiratory syndrome virus in nine sow herds[J]. <i>Vet Rec</i>, 2012, 170(9):225. |
[25] | Neumann E J, Kliebenstein J B, Johnson C D, et al. Assessment of the economic impact of porcine reproductive and respiratory syndrome on swine production in the United States[J]. <i>J Am Vet Med Assoc</i>, 2005, 227(3):385-392. |
[26] | Cribier A, Descours B, Valadao A L, et al. Phosphorylation of SAMHD1 by cyclin A2/CDK1 regulates its restriction activity toward HIV-1[J]. <i>Cell Rep</i>, 2013, 3(4):1036-1043. |
[27] | Pauls E, Ruiz A, Badia R, et al. Cell cycle control and HIV-1 susceptibility are linked by CDK6-dependent CDK2 phosphorylation of SAMHD1 in myeloid and lymphoid cells[J]. <i>J Immunol</i>, 2014, 193(4):1988-1997. |
[28] | Goldstone D C, Ennis-Adeniran V, Hedden J J, et al. HIV-1 restriction factor SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase[J]. <i>Nature</i>, 2011, 480(7377):379-382. |
[29] | Li Y, Peng X, Qin X. Recombinant expression, purification, and crystallization of the sterile alpha-motif/histidine-aspartate domain-containing protein from chicken[J]. <i>Protein Expr Purif</i>, 2017, 133(1):96-101. |
[30] | Ji X, Wu Y, Yan J, et al. Mechanism of allosteric activation of SAMHD1 by dGTP[J]. <i>Nat Struct Mol Biol</i>, 2013, 20(11):1304-1309. |
[31] | Zhu C, Gao W, Zhao K, et al. Structural insight into |
[32] | Sinkunas T, Gasiunas G, Fremaux C, et al. Cas3 is a single-stranded DNA nuclease and ATP-dependent helicase in the CRISPR/Cas immune system[J]. <i>EMBO J</i>, 2011, 30(7):1335-1342. |
[33] | dGTP-dependent activation of tetrameric SAMHD1 deoxynucleoside triphosphate triphosphohydrolase[J]. <i>Nat Commun</i>, 2013, 4(1):2722-2730. |