|
- 2018
不同燃料自由喷雾及喷雾撞壁特性试验研究
|
Abstract:
运用相位多普勒(phase Doppler anemometry, PDA)系统对甲醇、乙醇、异辛烷、甲苯参比燃料(toluene reference fuels, TRF)和汽油5种燃料缸内直喷(gasoline direct injection, GDI)喷油器喷雾撞壁后的粒径粒速进行了全面的试验研究.结果表明:与汽油相比, 甲醇、乙醇和TRF燃料自由喷雾的液滴速度更小, 而液滴粒径更大.与自由喷雾相比, 喷雾撞壁的入射液滴粒径较大, 反弹液滴粒径较小; 入射液滴的法向速度变小, 喷雾撞壁后反弹液滴的法向速度变小, 且不同燃料之间反弹液滴法向速度的差别变小.具有较大入射液滴直径和较高K值的乙醇和异辛烷燃料中, 乙醇喷雾撞壁后反弹液滴的粒径()小于异辛烷喷雾撞壁后的, 其破碎效果好于异辛烷的, Mundo的模型需做修改.不同燃料喷雾撞壁后的反弹角度均在0°~90°范围内变化, 而不是Stanton和Mundo模型中的65°~90°, 因此模型中反弹角度的变化范围应增大至0°~90°.
The size and velocity of droplets of impingement spray fueled with methanol,ethanol,isooctane,toluene reference fuels(TRF)and gasoline were investigated by using phase Doppler anemometry(PDA)system with a gasoline direct injection injector. Results show that the velocity of droplets is slower and the size of droplets is bigger in free spray fueled with methanol,ethanol and TRF,compared with those of gasoline fuel. Incident droplets are bigger and reflected droplets are smaller compared with those of free spray. The normal velocity of incident droplets and reflected droplets is smaller than that of free spray. The difference in normal velocity of reflected droplets between five different fuels is smaller. The diameters of ethanol fuel are smaller and the crushing effect is better than that of isooctane fuel after impinging wall,since both ethanol and isooctane fuels have larger incident droplets and higher K values. The model of Mundo needs to be modified. The reflected angles of droplets with five different fuels range from 0° to 90° after impinging the wall,rather than 65° to 90° described in the models of Stanton and Mundo. Therefore,the range of reflected angles in the models of Stanton and Mundo should be increased to 0°―90°
[1] | 马骁, 何旭, 王建昕, 等. 用激光诱导荧光法测量GDI 发动机缸内混合气体分布[J]. 内燃机工程, 2010, 31(4):1-5. |
[2] | Sabathil D, Koenigstein A, Schaffner P, et al. The influence of DISI engine operating parameters on particle number emissions[C]//<i>SAE Technical Paper</i>. Detroit, USA, 2011:2011-01-0143. |
[3] | He X, Ratcliff M A, Zigler B T. Effects of gasoline direct injection engine operating parameters on particle number emissions[J]. <i>Energy & Fuels</i>, 2012, 26(4):2014-2027. |
[4] | Mundo C, Sommerfeld C M, Tropea C. Droplet-wall collisions:Experimental studies of the deformation and breakup process[J]. <i>International Journal of Multiphase Flow</i>, 1995, 21(2):151-173. |
[5] | Samenfink W, Els??er A, Dullenkopf K, et al. Droplet interaction with shear-driven liquid films:Analysis of deposition and secondary droplet characteristics[J]. <i>International Journal of Heat & Fluid Flow</i>, 1999, 20(5):462-469. |
[6] | Mundo C, Tropea C, Sommerfeld M. Numerical and experimental investigation of spray characteristics in the vicinity of a rigid wall[J]. <i>IL Nuovo Cimento C</i>, 1997, |
[7] | Kalghatgi G, Babiker H, Badra J. A simple method to predict knock using toluene, N-heptane and Iso-octane blends(TPRF)as gasoline surrogates[J]. <i>SAE International Journal of Engines</i>, 2015(2):205-210. |
[8] | Su H P, Kim H J, Suh H K, et al. Atomization and spray characteristics of bioethanol and bioethanol blended gasoline fuel injected through a direct injection gasoline injector[J]. <i>International Journal of Heat & Fluid Flow</i>, 2009, 30(6):1183-1192. |
[9] | Chen L, Stone R, Richardson D. Effect of the valve timing and the coolant temperature on particulate emissions from a gasoline direct-injection engine fuelled with gasoline and with a gasoline-ethanol blend[C]//<i>Proceed-ings of the Institution of Mechanical Engineers Part D</i>:<i>Journal of Automobile Engineering</i>, 2012, 226(10):1419-1430. |
[10] | Li Xiang, Pei Yiqiang, Qin Jing, et al. Effects of wall temperature and oil film on the process of a gasoline spray after wall impingement[J]. <i>Journal of TianjinUniversity</i>:<i>Science and Technology</i>, 2016, 49(11):1195-1202(in Chinese). |
[11] | Park C, Kim S, Kim H, et al. Stratified lean combustion characteristics of a spray-guided combustion system in a gasoline direct injection engine[J]. <i>Energy</i>, 2012, 41(1):401-407. |
[12] | Ma Xiao, He Xu, Wang Jianxin, et al. In-cylinder mixture distribution measurement in a GDI engine using laser-introduced fluorescence[J]. <i>Chinese Internal Combustion Engine Engineering</i>, 2010, 31(4):1-5(in Chinese). |
[13] | 李翔, 裴毅强, 秦静, 等. 壁温和机油油膜对喷雾撞壁后发展的影响[J]. 天津大学学报:自然科学与工程技术版, 2016, 49(11):1195-1202. |
[14] | Whitaker P, Kapus P, Ogris M, et al. Measures to reduce particulate emissions from gasoline DI engines [J]. <i>SAE International Journal of Engines</i>, 2011, 4(1):1498-1512. |
[15] | Moreira A L N, Moita A S, Pan?o M R. Advances and challenges in explaining fuel spray impingement:How much of single droplet impact research is useful?[J]. <i>Progress in Energy & Combustion Science</i>, 2010, 36(5):554-580. |
[16] | Stanton D W. Modeling fuel film formation and wall interaction in diesel engines[J]. <i>Computational Fluid Dynamics</i>, 1996:10. 4271/960628. |
[17] | 15(1):80-86. |
[18] | 高 剑, 蒋德明, 廖世勇, 等. 缸内直喷汽油机高压涡旋喷油器的油束模型[J]. 西安交通大学学报, 2003, 37(9):898-902. |
[19] | Gao Jian, Jiang Deming, Liao Shiyong, et al. Spray model of high pressure swirl injector in the gasoline direct injection engines[J]. <i>Journal of Xi’an Jiaotong University</i>, 2003, 37(9):898-902(in Chinese). |
[20] | Bao Y, Chan Q N, Kook S, et al. Spray penetrations of ethanol, gasoline and Iso-octane in an optically accessible spark-ignition direct-injection engine[J]. <i>SAE Int J Fuels Lubr</i>, 2014, 7(3):1010-1026. |