|
- 2018
基于分块ST与主成分分析的三维掌纹识别
|
Abstract:
针对现有三维掌纹身份认证技术样本容量小和识别速度慢的问题, 提出一种基于曲面类型(surface type, ST)和主成分分析的三维掌纹识别新方法.该方法利用分块ST图像的直方图获得更加精细的掌纹特征信息; 通过预先降维和主成分分析法相结合, 大幅减少后续运算量以及三维信息量; 最后依据特征主成分分析的最近邻距离对比, 完成身份认证.实验结果表明, 该方法能在35 ms内完成三维掌纹的4 000次匹配, 从而实现大样本条件下特定样本的快速甄别.与已有的三维掌纹识别方法相比, 本文提出的方法不仅能够克服传统方法的小样本局限性, 而且可降低运算量和数据冗余; 在实现大样本身份识别的同时, 兼具更高的识别精度、速度和鲁棒性.
In order to conquer the limitations of small sample size and low identify speed in the existing three dimensional(3D)palmprint identification technology,a novel method based on surface type(ST)and principal component analysis(PCA)is proposed. The algorithm adopts the histograms of blocked ST as effective feature of the palmprint,reduces the subsequent computation complexity and compresses the 3D information substantially by combining descending dimension in advance and PCA. Nearest neighbour classifier is chosen as the discrimination criterion to identify a person. Experimental results indicate that the proposed method could complete 4 000 times of matching and identify a person within 35 ms in the case of 4 000 samples,which means that the algorithm is especially suitable for large sample database. Compared with the existing methods of 3D palmprint identification,the proposed one could overcome the traditional problem of small sample,reduce the computation complexity,and realize the identification in the case of large sample database with higher accuracy,greater speed and stronger robustness
[1] | Jiang Jingying, Hu Xiaodong, Xu Kexin, et al. Repetitive positioning technology based on correlation matching of palmprint image[J]. Journal of Tianjin University, 2003, 36(3):300-303(in Chinese). |
[2] | Yang B, Wang X, Yao J, et al. Efficient local rep-resentations for three-dimensional palmprint recognition [J]. Journal of Electronic Imaging, 2013, 22(4):1-8. |
[3] | Shang L, Huang D S, Du J X, et al. Palmprint recognition using FastICA algorithm and radial basis probabilistic neural network[J]. Neurocomputing, 2006, 69(13/14/15):1782-1786. |
[4] | Jia W, Hu R X, Lei Y K, et al. Histogram of oriented lines for palmprint recognition [J]. IEEE Transactions on Systems, Man & Cybernetics Systems, 2014, 44(3):385-395. |
[5] | Zhang L, Shen Y, Li Y H, et al. 3D palmprint identi- |
[6] | fication using block-wise features and collaborative representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(8):1730-1736. |
[7] | Kong A, Zhang D, Kamel M. A survey of palmprint recognition[J]. Pattern Recognition, 2009, 42(7):1408-1418. |
[8] | Shekar B H, Harivinod N. Multispectral palmprint matching based on joint sparse representation[C]// IEEE Conference on Computer Vision and Pattern Recognition. Jodhpur, India, 2013:1-4. |
[9] | Zhang Z H, Huang S J, Xu Y J, et al. 3D palmprint and hand imaging system based on full-field composite color sinusoidal fringe projection technique[J]. Applied Optics, 2013, 52(25):6138-6145. |
[10] | 蒋景英, 胡晓东, 徐可欣, 等. 基于掌纹图像相关匹配的重复定位技术[J]. 天津大学学报, 2003, 36(3):300-303. |
[11] | Yu H, Yang J. A direct LDA algorithm for high dimensional data with application to face recognition[J]. Pattern Recognition, 2001, 34(10):2067-2070. |
[12] | Laadjel M, Al-Maadeed S, Bouridane A. Combining Fisher locality preserving projections and passband DCT for efficient palmprint recognition[J]. Neurocomputing, 2015, 152(C):179-189. |
[13] | Zhang D, Zhou Z H. (2D)2PCA:Two-directional two-dimensional PCA for efficient face representation and recognition[J]. Neurocomputing, 2005, 69(1):224-231. |
[14] | 方蕙兰, 王国谨. 三角网格曲面上离散曲率估算方法的比较与分析[J]. 计算机辅助设计与图形学学报, 2005, 17(11):2500-2507. |
[15] | Fang Huilan, Wang Guojin. Comparison and analysis of discrete curvatures estimation methods for triangular meshes[J]. Journal of Computer-Aided Design & Computer Graphics, 2005, 17(11):2500-2507(in Chinese). |
[16] | Besl P J, Jain R C. Segmentation through variable-order surface fitting[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1988, 10(2):167-192. |
[17] | Duta N. A survey of biometric technology based on hand shape[J]. Pattern Recognition, 2009, 42(11):2797-2806. |
[18] | Zhang D, Kong W K, You J, et al. Online palmprint identification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(9):1041-1050. |
[19] | Liu M, Li L. Cross-correlation based binary image registration for 3D palmprint recognition[C]// IEEE Conference on Signal Processing. Beijing, China, 2012:1597-1600. |
[20] | 李春燕, 卢光明, 黎伟. 基于曲面曲率和RFLD 的3D掌纹识别方法[J]. 中国图象图形学报, 2011, 16(5):807-812. |
[21] | Li Chunyan, Lu Guangming, Li Wei. 3D palmprint recognition based on surface curvature and RLDA[J]. Journal of Image and Graphics, 2011, 16(5):807-812(in Chinese). |
[22] | Woodard D L, Flynn P J. Finger surface as a biometric identifier[J]. Computer Vision and Image Understand-ing, 2005, 100(3):357-384. |
[23] | Cantzler H, Fisher R B. Comparison of HK and SC curvature description methods[C]//Proceedings Third International Conference on 3-D Digital Imaging and Modeling. Quebec City, Canada, 2001:285-291. |
[24] | Wang Y X, Ruan Q Q. Dual-tree complex wavelet transform based local binary pattern weighted histogram method for palmprint recognition[J]. Computing & Informatics, 2012, 28(3):299-318. |
[25] | Mu M R, Ruan Q Q, Shen Y S. Palmprint recognition based on discriminative local binary patterns statistic feature[C]// IEEE Conference on Signal Acquisition and Processing. Bangalore, India, 2010:193-197. |
[26] | 岳峰, 左旺孟, 张大鹏. 掌纹识别算法综述[J]. 自动化学报, 2010, 36(3):354-365. |
[27] | Yue Feng, Zuo Wangmeng, Zhang Dapeng. Survey of palmprint recognition algorithms[J]. Acta Automatica Sinica, 2010, 36(3):354-365(in Chinese). |
[28] | Chen X J, Jie T, Xin Y. An algorithm for distorted fingerprint matching based on local triangle feature set[J]. IEEE Transactions on Information Forensics and Security, 2006, 1(2):169-177. |
[29] | Li W, Zhang D, Lu G M. A novel 3-D palmprint acquisition system[J]. IEEE Transactions on Systems, Man and Cybernetics, Part A, 2012, 42(2):443-452. |
[30] | PolyU 2D and 3D palmprint database[EB/OL]. http:// www.comp.polyu.edu.hk/~biometrics/, 2016. |
[31] | Zhang D, Lu G M, Li W, et al. Palmprint recognition using 3D information[J]. IEEE Transactions on Systems, Man and Cybernetics, Part C, 2009, 39(5):505-519. |
[32] | Li W, Zhang L, Zhang D, et al. Efficient joint 2D and 3D palmprint matching with alignment refinement[C]// IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, America, 2010:795-801. |
[33] | Zhang D, Kanhangad V, Luo N, et al. Robust palmprint verification using 2D and 3D features[J]. Pattern Recognition, 2010, 43(1):358-368. |
[34] | Li W, Zhang D, Zhang L, et al. 3D palmprint re-cognition with joint line and orientation features[J]. IEEE Transactions on Systems, Man and Cybernetics, Part C, 2011, 41(2):274-279. |