|
- 2017
一种基于循环神经网络的古文断句方法
|
Abstract:
摘要 提出一种基于循环神经网络的古文自动断句方法。该方法采用基于GRU(gated recurrent unit)的双向循环神经网络进行古文断句。在解码过程中, 该算法不仅利用神经网络输出的概率分布, 还进一步引入状态转移概率和长度惩罚, 以便提高断句准确率。在大规模古籍语料上的实验结果表明, 所提方法能够取得比传统方法更高的断句F1值。
Abstract This paper proposes an automatic sentence segmentation method for ancient Chinese texts based on recurrent neural network (RNN). A bi-directional RNN structure with gated recurrent units (GRU) is implemented, and state transition probability and length penalty are employed in decoding to improve the accuracy. Experimental results show that proposed model achieves higher F1 score than traditional methods.