全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

基于时空权重相关性的交通流大数据预测方法
Traffic Flow-Big Data Forecasting Method Based on Spatial-Temporal Weight Correlation

DOI: 10.13209/j.0479-8023.2017.040

Keywords: 交通流,大数据,分布式增量,路网相关性,STARIMA
traffic flow
,big-data
distributed incremental
,road network correlation,STARIMA

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 将分布式增量大数据聚合方法与交通流数据清洗规则相结合, 可以为交通流预测分析提供更准确可靠的数据源。通过交通流在路网中的相关性分析, 使用多阶路口转弯率构建空间权重矩阵, 完成对STARIMA交通流预测模型的改进。实验结果表明, 该方法可以在工作效率及准确程度上满足交通流大数据预测的需求, 为交通诱导信息发布提供依据。
Abstract A distributed incremental aggregation method combined with traffic flow data cleansing rules is proposed, and it can provide more accurate and reliable data for traffic flow forecast analysis. Through the correlation analysis of traffic flow in road network, the authors used the multi-allocation of turning rate in the intersection to build the spatial weight matrix, and improved the STARIMA traffic flow forecasting model. The experiment result proves that this method can meet the needs of traffic flow big-data forecasting in the efficiency and accuracy, and provide the basis for the traffic routing information.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133