全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

基于Meta-face Learning的工件定位算法
Workpiece Localization Algorithm Based on Meta-face Learning

Keywords: 工件定位,Meta-face Learning算法,迭代优化,Euclidean变换
algorithms
,computational efficiency,computer aided design,design,efficiency,errors,Euclidean transformation,flowcharting,geometry,glossaries,iteration optimization,Lagrange multipliers,least squares approximations,localization methods,mathematical models,MATLAB,matrix algebra,measurements,meta-face learning algorithm,optimization

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出了一种包含自由曲面特征的工件定位的Meta-face Learning(MFL)算法。利用基于字典学习的图像稀疏表示方法,在交替迭代优化的基础上,通过逐次修正Euclidean变换矩阵的列向量更新测量点到名义工件模型的位姿变换,确定工件坐标系相对于测量坐标系的位姿。设计了两个自由曲面验证了本文算法,并通过与现有算法的比较说明了其具有较高的计算效率和定位精度。
A Meta-face Learning(MFL) localization algorithm for workpiece including free form surfaces is presented in this paper. With the method of image sparse representation based on dictionary learning with alternating iteration optimization, the transformation is updated from the measurement data to ideal geometric model with aligning the column vector of euclidean transformation matrix individually, and then the configuration of design frame is determined with respect to measurement frame. Two free form surfaces are used as examples to validate the effectiveness of the proposed algorithm and the comparative analysis with existing algorithms demonstrates the high computational efficiency and location accuracy of the algorithm

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133