|
- 2018
环量控制襟翼系统流动机理研究
|
Abstract:
环量控制襟翼系统作为一种先进的襟翼系统,能够提高飞机起飞着陆性能并减小系统的复杂程度。以一种襟翼偏转角为60°的环量控制襟翼系统作为几何模型,采用Fluent求解定常雷诺平均N-S方程组,研究了不同动量系数时的环量控制襟翼系统的升力特性以及环量控制对流动分离的控制效果。计算结果表明:当攻角为0,动量系数为0.05时,ΔCl=1.7,效费比ΔCl/ΔCμ=31.4;随着动量系数增大,环量控制襟翼系统能够有效控制大偏角襟翼后方的流动分离,并在引射作用下使翼型上表面的流动速度加快,翼型环量增加,从而有效提高翼型的升力系数。
Circulation control flap system is an advanced flap system, which can improve the takeoff and landing performance and reduce the complexity of the system. A circulation control flap system with a flap deflection angle of 60° is used as geometric model, both the lifting characteristics of the circulation control flap system in different momentum coefficients and the control effect of the circulation control on the flow separation are studied through solving steady Reynolds-averaged Navier Stokes equations with Fluent software. The simulation results show that when the angle of attack is 0 and the momentum coefficient is 0.05, 1.7, 31.4; With the increase of the momentum coefficient, the circulation control flap system can control the flow separation behind the deflection flap effectively, accelerate the flow velocity on the upper surface of the airfoil under the influence of ejection effect, and increase the circulation of the airfoil, so that the lift coefficient of the airfoil is improved effectively