全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

全类型非对称七段式S型曲线加减速控制算法研究
Acceleration/Deceleration Control Algorithm of Full-types Asymmetric Seven-segment S-shape Curve

Keywords: 非对称S型曲线,七段式,盛金公式,可达性校验
asymmetric S-shape curve
,seven-segment,Shengjin formula,reachability checking

Full-Text   Cite this paper   Add to My Lib

Abstract:

为减小运动控制系统在启动、停止、加速和减速运动阶段的振动和冲击,提出全类型非对称七段式S型曲线加减速控制算法。通过分析最大加速度、最大减速度和最大速度的可达性,规划出17种速度曲线类型;考虑在给定轨迹段长约束下,保证系统能够从起点速度运动到终点速度,提出基于给定轨迹段长约束的起点速度和终点速度可达性校验;在给定轨迹段长度小于系统从起点速度运动到终点速度所需最短轨迹段长的情况下,采用盛金公式修正起点速度和终点速度,推导并优化S型曲线加减速控制算法流程。在自主开发多轴运动控制器卡上,验证所提出的全类型非对称七段式S型曲线加减速控制算法。实验结果表明:在保证最大加速度、最大减速度和最大速度不超限情况下,该算法可规划出17种速度曲线类型;在给定轨迹段长度较短系统无法从起点速度运动到终点速度的情形下,该算法解决了起点速度和终点速度的可达性校验及修正问题。
In order to reduce the vibration and impact of motion control system during start, stop, acceleration and deceleration stages, a acceleration/deceleration control algorithm of full-types asymmetric seven-segment S-shape curve was proposed. Through accessibility analysis of the maximum acceleration, maximum deceleration and maximum speed, 17 kinds of speed curve types were planned. To guarantee system can move from the starting speed to the ending speed under constraint of given trajectory length, a reachability checking of starting speed and ending speed was presented. The ShengJin formula is used to correct starting velocity and end velocity when the given trajectory length is smaller than the minimum trajectory length required by the system moving from starting velocity to end velocity. And also, the flowchart of S-curve acceleration/deceleration control algorithm was deduced and optimized. Experiments were carried out to verify the proposed S-shape curve control algorithm on the self-designed multi-axis motion control board. The experimental results show that the algorithm can plan 17 types of velocity curves, the maximum acceleration, maximum deceleration and maximum speed can be restricted without exceeding limits, the problem of reachability check and correction of starting speed and ending speed under constraint of a given trajectory length can be solved

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133