|
- 2018
一类脉冲种群模型渐近概周期解的研究
|
Abstract:
基于Mawhin延拓定理,研究了一类脉冲种群模型严格正的渐近概周期解的存在性。所得结论推广了已有文献的结论。由于Mawhin延拓定理之前仅被用来证明很多类方程(如:脉冲微分方程、泛函微分方程、积分方程、Lienard型方程、P-Laplacian方程等)周期解或概周期解的存在性,故具一定的创新性。
Based on the Mawhin continuous theorem,the existence of strictly positive asymptotically almost periodic solutions of a class of impulsive population models is studied. The conclusion generalizes the conclusion of the existing literatures. Since the Mawhin continuous theorem is only used to prove the existence of periodic solutions or almost periodic solutions of equations (for example:impulsive differential equation, functional differential equation, integral equation, Lienard equation, P-Laplacian equation), the main result is innovative