全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于NCSPSO-AFSA优化SVM的林木冠层图像分割

Keywords: 林木图像分割 NCSPSO 人工鱼群 支持向量机

Full-Text   Cite this paper   Add to My Lib

Abstract:

【目的】对林木冠层图像采用NCSPSO-AFSA优化支持向量机(SVM)进行图像分割,提取树干分割图,以进一步提高分割效果。【方法】对现有的小生境和交叉算子的粒子群算法(NCSPSO)进行优化,并与人工鱼群算(AFSA)混合,寻找最优惩罚系数C和高斯核函数中的参数γ;然后运用SVM方法对训练样本进行综合训练,以建立最佳分类模型;最后对香樟树、马褂木和杨树的冠层图像进行分割,并与AFSA算法、NCSPSO算法的分割效果进行比较。【结果】AFSA、NCSPSO、NCSPSO-AFSA算法的平均运行时间分别为178.909,154.661和97.213 s,平均分割准确率分别为90.83%,94.08%和98.90%,表明改进的NCSPSO-AFSA混合算法在效率上较其他2种算法提高了63%以上,而且分割准确率提高了5%~8%。【结论】运用NCSPSO-AFSA优化SVM方法对林木冠层图像进行树干图像分割,可得到最佳分割效果

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133