|
- 2015
反向激动剂的特性和研究进展
|
Abstract:
摘要:反向激动剂是一种新的作用于受体的药物类型,其研究经历了β-卡波啉乙酯的发现、活性研究、概念的提出、二态模型、固有活性几个阶段。多数G蛋白耦联受体具有固有活性,在无激动剂时,部分受体处于活化状态,能主动产生效应。反向激动剂对受体有亲和力,无内在活性,不激动受体,但能拮抗受体的固有活性,产生与激动剂相反的效应。反向激动剂和激动剂均能产生效应,但机制不同,激动剂激动受体,反向激动剂拮抗受体;反向激动剂和拮抗剂均拮抗受体,但反向激动剂拮抗受体的固有活性,而拮抗剂拮抗激动剂的效应。反向激动剂可以治疗受体固有活性增强性疾病,可上调和增敏固有活性受体,内源性反向激动剂可维持特定的生理功能。反向激动剂的研究对于完善受体学说有重要的理论意义,对于固有活性增强性疾病的诊断和治疗具有重要的临床意义。
ABSTRACT: Inverse agonist is a new type of drug acting on receptors. Its research has experienced several stages, including discovery of ethyl β-carboline 3-carboxylate, activity study, proposal of the concept, two-state model, and constitutive activity theory in succession. Most G protein-coupled receptors possess constitutive activity, i.e. a proportion of receptors are in active state and can produce effects without any agonist.Inverse agonist has an affinity to receptors, but no intrinsic activity, so it cannot activate receptors. However, it can antagonize the constitutive activity of receptors, and produce an opposite effect on the corresponding agonist. Both agonist and inverse agonist can produce their effect alone with different mechanisms. Agonist activates its receptors, but inverse agonist antagonizes them. Both inverse agonist and antagonist can antagonize receptors. However, inverse agonist and antagonist antagonize the constitutive activity of receptor and the agonist’s effects, respectively. Inverse agonists can be used to treat diseases with enhanced constitutive activity, up-regulate and sensitize receptors with constitutive activity. Moreover, endogenous inverse agonists can maintain a specific physiological function. The study on inverse agonist has a theoretical significance in perfecting receptor theory as well as a clinical value in diagnosis and treatment of diseases with enhanced constitutive activity
[1] | CANAL CE, MORGAN D, FELSING D, et al. A novel aminotetralin-type serotonin (5-ht) 2c receptor-specific agonist and 5-ht2a competitive antagonist/5-ht2b inverse agonist with preclinical efficacy for psychoses[J]. J Pharmacol Exp Ther, 2014, 349(2):310-318. |
[2] | DRAGUN D, MULLER DN, BRASEN JH, et al. AngiotensinⅡtype 1-receptor activating antibodies in renal-allograft rejection[J]. N Engl J Med, 2005, 352(6):558-569. |
[3] | MILLIGAN G. Constitutive activity and inverse agonists of g protein-coupled receptors: A current perspective[J]. Mol Pharmacol, 2003, 64(6):1271-1276. |
[4] | BRAESTRUP C, NIELSEN M, OLSEN CE. Urinary and brain beta-carboline-3-carboxylates as potent inhibitors of brain benzodiazepine receptors[J]. P Natl Acad Sci-Biol, 1980, 77(4):2288-2292. |
[5] | BRAESTRUP C, NIELSEN M. Searching for endogenous benzodiazepine receptor ligands[J]. Trends Pharmacol Sci, 1980, 1(15):424-427. |
[6] | COWEN PJ, GREEN AR, NUTT DJ. Ethyl beta-carboline carboxylate lowers seizure threshold and antagonizes flurazepam-induced sedation in rats[J]. Nature, 1981, 290(5801):54-55. |
[7] | BRAESTRUP C, SCHMIECHEN R, NEEF G, et al. Interaction of convulsive ligands with benzodiazepine receptors[J]. Science, 1982, 216(4551):1241-1243. |
[8] | DOROW R, HOROWSKI R, PASCHELKE G, et al. Severe anxiety induced by fg-7142, a beta-carboline ligand for benzodiazepine receptors[J]. Lancet, 1983, 2(8341):98-99. |
[9] | EHLERT FJ. Inverse agonists, cooperativity and drug-action at benzodiazepine receptors[J]. Trends Pharmacol Sci, 1986, 7(1):28-32. |
[10] | TSCHAMMER N. Allosteric modulation of the g protein-coupled us28 receptor of human cytomegalovirus: Are the small-weight inverse agonist of us28 ??camouflaged?? agonists?[J]. Bioorg Med Chem Lett, 2014, 24(16):3744-3747. |
[11] | TONIOLO EF, MAIQUE ET, FERREIRA WA Jr, et al. Hemopressin, an inverse agonist of cannabinoid receptors, inhibits neuropathic pain in rats[J]. Peptides, 2014, 56:125-131. |
[12] | KOO JY, OH S, CHO SR, et al. Total synthesis of eryvarin h and its derivatives and their biological activity as errgamma inverse agonist[J]. Org Biomol Chem, 2013, 11(35):5782-5786. |
[13] | FILE SE, LISTER RG, NUTT DJ. The anxiogenic action of benzodiazepine antagonists[J]. Neuropharmacology, 1982, 21(10):1033-1037. |
[14] | POLC P, BONETTI EP, SCHAFFNER R, et al. A three-state model of the benzodiazepine receptor explains the interactions between the benzodiazepine antagonist ro 15-1788, benzodiazepine tranquilizers, beta-carbolines, and phenobarbitone[J]. Naunyn Schmiedebergs Arch Pharmacol, 1982, 321(4):260-264. |
[15] | NUTT DJ, COWEN PJ, LITTLE HJ. Unusual interactions of benzodiazepine receptor antagonists[J]. Nature, 1982, 295(5848):436-438. |
[16] | 张幼怡,韩启德. 反向激动剂:受体研究中的一个新发现[J]. 生理科学进展,1997, 28(1):9-13. |
[17] | 张厚利,唐泽耀,杨静娴,等. 反向激动剂的药理效应特征[J]. 中国药理学通报, 2005, 21(11):1285-1288. |
[18] | PRICE DL, BONHAUS DW, MCFARLAND K. Pimavanserin, a 5-ht2a receptor inverse agonist, reverses psychosis-like behaviors in a rodent model of Alzheimer??s disease[J]. Behav Pharmacol, 2012, 23(4):426-433. |
[19] | YANAGAWA M, YAMASHITA T, SHICHIDA Y. Glutamate acts as a partial inverse agonist to metabotropic glutamate receptor with a single amino acid mutation in the transmembrane domain[J]. J Biol Chem, 2013, 288(14):9593-9601. |
[20] | HOSSAIN M, MUNTASIR HA, ISHIGURO M, et al. Mechanism of inverse agonist action of sarpogrelate at the constitutively active mutant of human 5-ht2a receptor revealed by molecular modeling[J]. Biol Pharm Bull, 2012, 35(9):1553-1559. |
[21] | KLETKE O, SERGEEVA OA, LORENZ P, et al. New insights in endogenous modulation of ligand-gated ion channels: Histamine is an inverse agonist at strychnine sensitive glycine receptors[J]. Eur J Pharmacol, 2013, 710(1-3):59-66. |
[22] | TOFFANO G, GUIDOTTI A, COSTA E. Purification of an endogenous protein inhibitor of the high affinity binding of gamma-aminobutyric acid to synaptic membranes of rat brain[J]. Proc Natl Acad Sci USA, 1978, 75(8):4024-4028. |
[23] | MOVERARE-SKRTIC S, BORJESSON AE, FARMAN HH, et al. The estrogen receptor antagonist ici 182,780 can act both as an agonist and an inverse agonist when estrogen receptor alpha af-2 is modified[J]. Proc Natl Acad Sci USA, 2014, 111(3):1180-1185. |
[24] | KENAKIN T. Efficacy as a vector: The relative prevalence and paucity of inverse agonism[J]. Mol Pharmacol, 2004, 65(1):2-11. |
[25] | PARK PS. Constitutively active rhodopsin and retinal disease[J]. Adv Pharmacol, 2014, 70:1-36. |
[26] | MISEREY-LENKEI S, PARNOT C, BARDIN S, et al. Constitutive internalization of constitutively active angiotensin Ⅱ at(1a) receptor mutants is blocked by inverse agonists[J]. J Biol Chem, 2002, 277(8):5891-5901. |
[27] | WALSTAB J, STEINHAGEN F, BRUSS M, et al. Differences between human wild-type and c23s variant 5-ht2c receptors in inverse agonist-induced resensitization[J]. Pharmacol Rep, 2011, 63(1):45-53. |
[28] | LABRECQUE P, ROY SJ, FRECHETTE L, et al. Inverse agonist and pharmacochaperone properties of mk-0524 on the prostanoid dp1 receptor[J]. PLoS One, 2013, 8(6):e65767. |
[29] | LEVIN MC, MARULLO S, MUNTANER O, et al. The myocardium-protective gly-49 variant of the beta(1)-adrenergic receptor exhibits constitutive activity and increased desensitization and down-regulation[J]. J Biol Chem, 2002, 277(34):30429-30435. |
[30] | COSTA T, HERZ A. Antagonists with negative intrinsic activity at delta-opioid receptors coupled to gtp-binding proteins[J]. P Natl Acad Sci USA, 1989, 86(19):7321-7325. |
[31] | LEFKOWITZ RJ, COTECCHIA S, SAMAMA P, et al. Constitutive activity of receptors coupled to guanine-nucleotide regulatory proteins[J]. Trends Pharmacol Sci, 1993, 14(8):303-307. |
[32] | SAMAMA P, COTECCHIA S, COSTA T, et al. A mutation-induced activated state of the beta(2)-adrenergic receptor - extending the ternary complex model[J]. J Biol Chem,1993, 268(7):4625-4636. |
[33] | LEU-SEMENESCU S, NITTUR N, GOLMARD JL, et al. Effects of pitolisant, a histamine h3 inverse agonist, in drug-resistant idiopathic and symptomatic hypersomnia: A chart review[J]. Sleep Med, 2014, 15(6):681-687. |
[34] | BOND RA, IJZERMAN AP. Recent developments in constitutive receptor activity and inverse agonism, and their potential for gpcr drug discovery[J]. Trends Pharmacol Sci, 2006, 27(2):92-96. |