全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

NT4p53(C22)Ant融合基因重组腺病毒的构建及对肝癌细胞的杀伤作用
Construction of recombinant adenovirus harboring fusion gene NT4p53(C22)Ant and its killing effect on HepG2 tumor cells

DOI: 10.7652/jdyxb201502003

Keywords: NT4p53(C22)Ant,重组腺病毒,肿瘤,基因治疗
NT4p53(C22)Ant
,recombinant adenovirus,carcinoma,gene therapy

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要:目的 构建编码融合基因NT4p53(C22)Ant嵌合肽的重组腺病毒表达载体,并研究其对人肝癌HepG2细胞的杀伤作用。方法 使用分子克隆技术,通过同源重组获得重组腺病毒rAVV-NT4p53(C22)Ant,收集上清、大量扩增并测定其滴度。感染人肝癌HepG2细胞,采用免疫组化法检测p53表达,MTT实验、流式细胞仪观察rAAV-NT4p53(C22)Ant对肿瘤细胞的杀伤作用。结果 成功构建重组腺病毒表达载体,感染人肝癌HepG2细胞后p53表达率为(44.88±2.45)%;MTT检测显示,细胞存活率随作用时间延长明显降低,与空病毒组及对照组比较差异均有统计学意义(P<0.05),流式细胞仪检测显示G0/G1期细胞比例及凋亡细胞较空病毒组及对照组增加。结论 构建的NT4p53(C22) Ant重组腺病毒在肝癌细胞中能有效表达,对肝癌HepG2细胞有抑制增殖和促进凋亡的作用。
ABSTRACT: Objective To construct a recombinant adenovirus vector harboring fusion gene NT4p53(C22)Ant and study its killing effect on HepG2 tumor cells. Methods Using molecular cloning technology, the rAVV-NT4p53(C22)Ant was produced by homologous recombination. Then we collected virus supernatant and measured its titer after it was amplified by PCR. The effect of this fusion gene on HepG2 tumor cells was evaluated by IHC, MTT assay, PI staining and flow cytometry. Results The recombinant adenovirus was successfully constructed. The p53 expression rate in rAAV-NT4p53(C22)Ant group was (44.88±2.45)%. MTT assay showed that rAAV-NT4p53(C22)Ant could strongly suppress the growth of HepG2 tumor cells. Flow cytometry showed that rAAV-NT4p53(C22)Ant could induce obvious apoptosis of HepG2 tumor cells. Conclusion The recombinant adenovirus vector encoding gene NT4p53(C22)Ant has been successfully constructed and expressed in this experiment, and it can inhibit proliferation and induce apoptosis of HepG2 tumor cells

References

[1]  SNYDER EL, MEADE BR, SAENZ CC, et al. Treatment of terminal peritoneal carcinomatosis by a transducible p53-activating peptide[J]. PLoS Biol, 2004, 2(2):186-193.
[2]  SAID R, HONG D, WARNEKE C, et al. P53 mutations in advanced cancers: clinical characteristics, outcomes, and correlation between progression-free survival and bevacizumab-containing therapy[J]. Oncotarget, 2013, 4(5):705-714.
[3]  WINTER M, MILNE D, DIAS S, et al. Protein kinase CK1delta phosphorylates key sites in the acidic domain of murine double-minute clone 2 protein (MDM2) that regulate p53 turnover[J]. Biochemistry, 2004, 43(51):16356-16364.
[4]  SALEH J, KREISSLER-HAAG D, MONTENARH M. p53 autoantibodies from patients with colorectal cancer recognize common epitopes in the N-or C-terminus of p53[J]. Int J Oncol, 2004, 25(4):1149-1155.
[5]  宋丽萍,李跃萍,邱曙东,等. NT4-p53(N15)-Ant重组慢病毒的构建及其对肝癌细胞的杀伤效应[J]. 中华肿瘤杂志, 2010, 32(1):10-16.
[6]  ARAKI D, TAKAYAMA K, INOUE M, et al. Cell-penetrating D-isomer peptides of p53 C-terminus: long-term inhibitory effect on the growth of bladder cancer[J]. Urology, 2010, 75(4):813-819.
[7]  UEDA Y, WEI FY, HIDE T, et al. Induction of autophagic cell death of glioma-initiating cells by cell-penetrating D-isomer peptidesconsisting of Pas and the p53 C-terminus[J]. Biomaterials, 2012, 33(35):9061-9069.
[8]  SELIVANOVA G, WIMAN KG. Reactivation of mutant p53: molecular mechanisms and therapeutic potential[J]. Oncogene, 2007, 26(15):2243-2254.
[9]  ANO BOM A, RANGEL L, COSTA D, et al. Mutant p53 aggregates into prion-like amyloid oligomers and fibrils[J]. J Biol Chem, 2012, 287(33):28152-28162.
[10]  IDOGAWA M, SASAKI Y, SUZUKI H, et al. A single recombinant adenovirus expressing p53 and p21-targeting artificial microRNAs efficiently induces apoptosis in human cancer cells[J].Clin Cancer Res, 2009, 15(3):3725-3732.
[11]  STEWART KM, HORTON KL, KELLEY SO. Cell-penetrating peptides as delivery vehicles for biology and medicine[J]. Org Biomol Chem, 2008, 6(13):2242-2255.
[12]  NEMUN J, NEMUNAITIS J. Head and neck cancer: response to p53-based therapeutics[J]. Head Neck, 2011, 33(1):131-134.
[13]  白艳霞,闫利英,马清涌,等. 介导p73去阻抑肽表达的重组腺伴病毒的构建和鉴定[J]. 西安交通大学学报:医学版, 2012, 33(2):180-184,189.
[14]  LI YP, QIU SD, SONG LP, et al. Adenovirus-mediated killing of hepatocellular carcinoma HepG2 cells by heterogeneous fusion gene NT4p53(N15)Ant[J]. Nan Fang Yi Ke Da Xue Xue Bao, 2007, 27(7):936-940.
[15]  TERUYA K, MURPHY AC, BURLIN T, et al. Fmoc-based chemical synthesis and selective binding to supercoiled DNA of the p53 C-terminal segment and its phosphorylated and acetylated derivatives[J]. J Pept Sci, 2004, 10(8):479-493.
[16]  HOSONO T, TANAKA T, TANJI K, et al. NUB1, an interferon-inducible protein, mediates anti-proliferative actions and apoptosis in renal cell carcinoma cells through cell-cycle regulation[J]. Br J Cancer, 2010, 102(5):873-882.
[17]  LI Q, CHENG H, ZHU G, et al. Gambogenic acid inhibits proliferation of A549 cells through apoptosis-inducing and cell cycle arresting[J]. Biol Pharm Bull, 2010, 33(3):415-420.
[18]  BAUMER N, SANDSTEDE M, DIEDERICHS S. Analysis of the genetic interactions between Cyclin A1, Atm and p53 during spermatogenesis[J]. Asian J Androl, 2007, 9(6):739-750.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133