|
- 2017
藏红花素抑制谷氨酸盐诱导的视网膜神经节细胞凋亡
|
Abstract:
摘要:目的 研究藏红花素通过影响Ca2+内流对谷氨酸盐诱导的视网膜神经节细胞(RGCs)凋亡的影响及可能机制。方法 分离大鼠RGCs,以0.1、1mmol/L的谷氨酸盐刺激RGCs 24、48h,建立RGCs凋亡模型,并用0.1、1.0、3.0μmol/L浓度梯度藏红花素分别处理。Annexin V-FITC/PI双标检测细胞凋亡率,Fluo-3/AM荧光标记Ca2+检测胞内钙离子浓度,Western blot检测藏红花素对胞内钙离子介导的凋亡信号分子calpain和CaMKⅡ表达的影响。JC-1荧光染色和Western blot分别检测藏红花素对线粒体膜电位和线粒体凋亡相关信号分子Caspase-3、Caspase-9、Bcl-2/Bax表达的影响。结果 0.1mmol/L谷氨酸盐刺激24h,RGCs细胞凋亡率与对照组差异无统计学意义(P>0.05);而当刺激48h时,RGCs的凋亡率达到(43.050±2.616)%,差异有统计学意义(P<0.01)。高剂量谷氨酸盐(1mmol/L)刺激24、48h的RGCs凋亡率为(46.450±1.061)%和(45.500±3.253)%,较对照组均显著增加,差异有统计学意义(P<0.01)。用1mmol/L谷氨酸盐刺激RGCs 12h后加入0.1、1.0、3.0μmol/L藏红花素再处理12h,不同浓度藏红花素均可显著抑制细胞凋亡(P<0.01),且抑制效率具有剂量依赖性。另外,1.0μmol/L藏红花素组的谷氨酸盐诱导的胞外Ca2+内流减少及钙依赖蛋白Calpain1和CaMKⅡ的表达减弱,线粒体膜电位增高,Caspase-3和Caspase-9的表达减少,Bcl-2/Bax表达上调。结论 藏红花素抑制谷氨酸盐诱导的RGCs凋亡,其机制可能与阻止胞外Ca2+内流,抑制钙依赖的凋亡信号通路和线粒体凋亡信号通路有关。
ABSTRACT: Objective To evaluate the effects and underlying mechanisms of crocin on glutamate-induced apoptosis of retinal ganglion cells (RGCs) by affecting extracellular calcium influx. Methods Primary rat retinal ganglion cells were isolated and stimulated with glutamate at concentrations of 0.1mmol/L and 1mmol/L for 24h or 48h, respectively, to establish apoptosis model of RGCs. Afterwards, crocin of different doses (0.1, 1.0 and 3.0μmol/L) was used to treat the glutamate-induced RGCs for 12h; then cell apoptosis was detected by Annexin V-FITC/PI staining. The intracellular calcium concentration was determined by Fluo-3/AM fluorescent labeling. Western blot was used to examine the effect of crocin on Ca2+-mediated apoptotic signal molecules calpain and CaMKII. The mitochondrial membrane potential was detected by JC-1 staining and mitochondrial apoptosis-related signaling molecules Caspase-3, Caspase-9 and Bcl-2/Bax were evaluated by Western blot, respectively. Results In comparison with the untreated controls, the cell apoptosis of RGCs exposed to 0.1mmol/L of glutamate for 24h did not significantly change (P>0.05). However, apoptosis rate of the cells reached (43.050±2.616)% when the stimulation time lasted for 48h and showed a significant increase (P<0.01). Treatment with higher-dose glutamate (1mmol/L) significantly increased apoptosis of RGCs at 24h (46.450±1.061)% and 48h (45.500±3.253)% compared with the controls (P<0.01). RGCs were induced by 1mmol/L of glutamate for 12h, followed by the treatment with crocin at concentrations of 0.1, 1.0 and 3.0μmol/L, respectively. Each dose of crocin could significantly inhibit cell apoptosis in the dose-dependent manner (P<0.01). In addition, crocin at 1.0μmol/L blocked glutamate-induced
[1] | DOBLE A. The role of excitotoxicity in neurodegenerative disease: Implications for therapy[J]. Pharmacol Ther, 1999, 81(3):163-221. |
[2] | CHEUNG W, GUO L, CORDEIRO MF. Neuroprotection in glaucoma: Drug-based approaches[J]. Optom Vis Sci, 2008, 85(6):406-416. |
[3] | LUO X, HEIDINGER V, PICAUD S, et al. Selective excitotoxic degeneration of adult pig retinal ganglion cells in vitro[J]. Invest Ophthalmol Vis Sci, 2001, 42(5):1096-1106. |
[4] | GUO L, SALT TE, MAASS A, et al. Assessment of neuroprotective effects of glutamate modulation on glaucoma-related retinal ganglion cell apoptosis in vivo[J]. Invest Ophthalmol Vis Sci, 2006, 47(2):626-633. |
[5] | 陈子微,吴翔. 红景天苷通过激活钙离子/钙调蛋白/钙调蛋白激酶δ/内皮型一氧化氮合酶通路抑制高糖对人脐静脉内皮细胞的损伤[J]. 中华心血管病杂志, 2014, 42(4):327-333. |
[6] | 钱冰,吕春娥,田小康,等. 钙调蛋白依赖性蛋白激酶Ⅱ在AD样大鼠海马的表达及其与细胞凋亡的关系[J]. 山东大学学报(医学版), 2014, 52(2):5. |
[7] | YAMASAKI M, MISHIMA HK, YAMASHITA H, et al. Neuroprotective effects of erythropoietin on glutamate and nitric oxide toxicity in primary cultured retinal ganglion cells[J].〖JP〗 Brain Res, 2005, 1050(1-2):15-26. |
[8] | KHAN AK, TSE DY, VAN DER HEIJDEN ME, et al. Prolonged elevation of intraocular pressure results in retinal ganglion cell loss and abnormal retinal function in mice[J]. Exp Eye Res, 2015, 130:29-37. |
[9] | LESKE MC, HEIJL A, HUSSEIN M, et al. Factors for glaucoma progression and the effect of treatment: The early manifest glaucoma trial[J]. Arch Ophthalmol, 2003, 121(1):48-56. |
[10] | THAM YC, LI X, WONG TY, et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis[J]. Ophthalmology, 2014, 121(11):2081-2090. |
[11] | DONG CJ, GUO Y, AGEY P, et al. Alpha2 adrenergic modulation of NMDA receptor function as a major mechanism of RGC protection in experimental glaucoma and retinal excitotoxicity[J]. Invest Ophthalmol Vis Sci, 2008, 49(10):4515-4522. |
[12] | SEKI M, SOUSSOU W, MANABE S, et al. Protection of retinal ganglion cells by caspase substrate-binding peptide IQACRG from N-methyl-D-aspartate receptor-mediated excitotoxicity[J]. Invest Ophthalmol Vis Sci, 2010, 51(2):1198-1207. |
[13] | OCHIAI T, SHIMENO H, MISHIMA K, et al. Protective effects of carotenoids from saffron on neuronal injury in vitro and in vivo[J]. Biochim Biophys Acta, 2007, 1770(4):578-584. |
[14] | LAABICH A, VISSVESVARAN GP, LIEU KL, et al. Protective effect of crocin against blue light- and white light-mediated photoreceptor cell death in bovine and primate retinal primary cell culture[J]. Invest Ophthalmol Vis Sci, 2006, 47(7):3156-3163. |
[15] | BARRES BA, SILVERSTEIN BE, COREY DP, et al. Immunological, morphological, and electrophysiological variation among retinal ganglion cells purified by panning[J]. Neuron, 1988, 1(9):791-803. |
[16] | PARK YH, MCGRADY NR, MA HY, et al. AMPA receptor desensitization is the determinant of AMPA receptor mediated excitotoxicity in purified retinal ganglion cells[J]. Exp Eye Res, 2015, 132:136-150. |
[17] | WANG Z, PAN X, WANG D, et al. Protective effects of protocatechuic acid on retinal ganglion cells from oxidative damage induced by H??2O??2[J]. Neurol Res, 2015, 37(2):159-166. |
[18] | WANG KK. Calpain and caspase: Can you tell the difference?[J]. Trends Neurosci, 2000, 23(1):20-26. |
[19] | CHEN W, LI X, JIA LQ, et al. Neuroprotective activities of catalpol against CaMKII-dependent apoptosis induced by LPS in PC12 cells[J]. Br J Pharmacol, 2013, 169(5):1140-1152. |
[20] | CHEN L, QI Y, YANG X. Neuroprotective effects of crocin against oxidative stress induced by ischemia/reperfusion injury in rat retina[J]. Ophthalmic Res, 2015, 54(3):157-168. |
[21] | QI Y, CHEN L, ZHANG L, et al. Crocin prevents retinal ischaemia/reperfusion injury-induced apoptosis in retinal ganglion cells through the PI3K/AKT signalling pathway[J]. Exp Eye Res, 2013, 107:44-51. |
[22] | NICHOLLS DG, JOHNSON-CADWELL L, VESCE S, et al. Bioenergetics of mitochondria in cultured neurons and their role in glutamate excitotoxicity[J]. J Neurosci Res, 2007, 85(15):3206-3212. |
[23] | ADAMS JM, CORY S. The Bcl-2 protein family: Arbiters of cell survival[J]. Science, 1998, 281(5381):1322-1326. |