|
- 2016
靶向下调Cep55表达水平对肝癌细胞增殖能力的影响
|
Abstract:
摘要:目的 通过siRNA干扰技术下调中心体相关蛋白Cep55的表达水平,并检测对肝癌HepG2和Hep3B细胞增殖能力的影响,为原发性肝癌的基因靶向治疗提供理论依据。方法 应用Cep55特异性siRNA转染肝癌HepG2和Hep3B细胞,采用Real-time PCR和Western blot方法分别从mRNA和蛋白质水平检测Cep55 siRNA对Cep55基因的干扰效果,MTT法检测下调Cep55表达水平时细胞增殖能力的变化,流式细胞仪检测细胞周期分布变化。结果 与阴性对照组比较,干扰siRNA组Cep55的mRNA及蛋白表达水平均出现明显降低(P<0.05);MTT检测结果显示下调Cep55表达水平能够显著抑制肝癌细胞增殖(P<0.05);流式细胞仪检测显示下调Cep55表达水平能够增加G1期细胞的比例,同时降低G2-M期细胞的比例,出现明显的G2期阻滞。结论 下调Cep55表达水平能够显著抑制肝癌细胞的增殖能力,并出现G2期阻滞,提示Cep55可能成为原发性肝癌的有效治疗靶点。
ABSTRACT: Objective To investigate the effects of small interfering RNA (siRNA) knockdown of centrosomal protein 55ku (Cep55) on the proliferation capacity of human hepatocellular carcinoma cells HepG2 and Hep3B in vitro so as to provide theoretical evidence for gene-targeted therapy for human hepatocellular carcinoma. Methods Cep55 siRNA was transfected into human hepatocellular carcinoma cells HepG2 and Hep3B with Lipofectamine 2000. Real-time PCR and Western blotting were used to detect the expression of Cep55 at mRNA and protein levels. Cell proliferation was evaluated by MTT assay and cell cycle analysis was performed by flow cytometry. Results Cep55 siRNA was successfully transfected into HepG2 and Hep3B cells, resulting in the significant inhibition of Cep55 mRNA and protein expressions (P<0.05). Downregulation of Cep55 significantly decreased the proliferation of HepG2 and Hep3B cells (P<0.05) and induced G2 cell cycle arrest. Conclusion Downregulating the expression of Cep 55 can inhibit the proliferation of hepatocellular carcinoma cells and induce G2 cell cycle arrest, which indicates that Cep 55 may be a potential target for primary hepatocellular carcinoma therapy
[1] | LAFARO KJ, DEMIRJIAN AN, PAWLIK TM. Epidemiology of hepatocellular carcinoma[J]. Surg Oncol Clin N Am, 2015, 24(1):1-17. |
[2] | CHEN W, ZHENG R, ZHANG S, et al. Report of incidence and mortality in China cancer registries, 2009[J]. Chin J Cancer Res, 2013, 25(1):10-21. |
[3] | LOPE CR, TREMOSINI S, FORNER A, et al. Management of HCC[J]. J Hepatol, 2012, 56:S75-S87. |
[4] | EL-SERAG HB, RUDOLPH KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis[J]. Gastroenterology, 2007, 132(7):2557-2576. |
[5] | GALINDO-CUSPINERA V, WINNIG M, BUFE B, et al. A TAS1R receptor-based explanation of sweet ’water-taste’[J]. Nature, 2006, 441(7091):354-357. |
[6] | FABBRO M, ZHOU BB, TAKAHASHI M, et al. Cdk1/Erk2 and Plk1 dependent phosphorylation of a centrosome protein, Cep55, is required for its recruitment to midbody and cytokinesis [J]. Dev Cell, 2005, 9(4):477-488. |
[7] | DOXSEY SJ. Molecular links between centrosome and midbody[J]. Mol Cell, 2005, 20(2):170-172. |
[8] | VAN DER HORST A, SIMMONS J, KHANNA KK. Cep55 stabilization is required for normal execution of cytokinesis[J]. Cell Cycle, 2009, 8(22):3742-3749. |
[9] | JEFFERY J, SINHA D, SRIHARI S, et al. Beyond cytokinesis: the emerging roles of CEP55 in tumorigenesis[J]. Oncogene, 2015, doi: 10.1038/onc.2015.128. |
[10] | HOLCZBAUER ?B, FACTOR VM, ANDERSEN JB, et al. Modeling pathogenesis of primary liver cancer in lineage-specific mouse cell types[J]. Gastroenterology, 2013, 145(1):221-231. |
[11] | KUMAR A, RAJENDRAN V, SETHUMADHAVAN R, et al. CEP proteins: the knights of centrosome dynasty[J]. Protoplasma, 2013, 250(5):965-983. |
[12] | MONDAL G, ROWLEY M, GUIDUGLI L, et al. BRCA2 localization to the midbody by filamin A regulates cep55 signaling and completion of cytokinesis[J]. Dev Cell, 2012, 23(1):137-152. |
[13] | 〖JP2〗INODA S, HIROHASHI Y, TORIGOE T, et al. Cep55/c10orf3, a tumor antigen derived from a centrosome residing protein in breast carcinoma[J].〖JP〗 J Immunother, 2009, 32(5):474-485. |
[14] | JANUS JR, LABORDE RR, GREENBERG AJ, et al. Linking expression of FOXM1, CEP55 and HELLS to tumorigenesis in oropharyngeal squamous cell carcinoma[J]. Laryngoscope, 2011, 121(12):2598-2603. |
[15] | WASEEM A, ALI M, ODELL EW, et al. Downstream targets of FOXM1: CEP55 and HELLS are cancer progression markers of head and neck squamous cell carcinoma[J]. Oral Oncol, 2010, 46(7):536-542. |
[16] | CHANG YC, WU CH, YEN TC, et al. Centrosomal protein 55 (Cep55) stability is negatively regulated by p53 protein through Polo-like kinase 1 (Plk1)[J]. J Biol Chem, 2012, 287(6):4376-4385. |
[17] | BASTOS RN, BARR FA. Plk1 negatively regulates Cep55 recruitment to the midbody to ensure orderly abscission[J]. J Cell Biol, 2010, 191(4):751-760. |
[18] | VAN DER HORST A, KHANNA KK. The peptidyl-prolyl isomerase Pin1 regulates cytokinesis through Cep55[J]. Cancer Res, 2009, 69(16):6651-6659. |
[19] | IWAMORI T, IWAMORI N, MA L, et al. TEX14 interacts with CEP55 to block cell abscission[J]. Mol Cell Biol, 2010, 30(9):2280-2292. |
[20] | TAO J, ZHI X, TIAN Y, et al. CEP55 contributes to human gastric carcinoma by regulating cell proliferation[J]. Tumour Biol, 2014, 35(5):4389-9439. |