|
- 2018
内侧半月板失稳诱发C57BL/6小鼠骨关节炎模型中关节腔微量注射方法的建立
|
Abstract:
摘要:目的 建立C57BL/6小鼠骨关节炎(OA)模型关节腔微量注射的图文操作流程。方法 24只雄性小鼠分假手术组及内侧半月板失稳术(DMM)组,显微操作下离断右膝内侧半月板胫副韧带(MMTL)诱发关节力学失稳,在OA模型基础上通过甲苯胺蓝关节腔注射验证微量给药的可行性,采用OARSI评分系统评估OA小鼠膝关节病理等级。结果 DMM组小鼠关节软骨番红O着色缺失,按关节分区评分,股骨内侧髁评分为3.4170±0.6421(n=12),内侧胫骨平台评分为9.5830±0.8115(n=12);假手术组对应部位评分依次为0.4167±0.1486(n=12),0.5833±0.1486(n=12)。DMM组和假手术组OA病理评分相比较,股骨内侧髁(P=0.0002)及胫骨平台(P<0.0001)评分具有统计学差异。此外,区别于对照组关节腔注射生理盐水,微量注射甲苯胺蓝成功时可使透明软骨着色。结论 内侧半月板失稳术可诱导C57BL/6小鼠产生典型OA病损,OASRI评分提示内侧股骨髁及胫骨平台OA进展严重;可利用甲苯胺蓝验证小鼠OA模型中关节腔给药的重复性和可靠性。
ABSTRACT: Objective To establish an operation procedure of joint cavity micro-aspiration in destabilization of medial meniscus (DMM)-induced osteoarthritis (OA) model in C57BL/6 mice. Methods We included 24 male mice in this study, and sectioning of medial meniscotibial ligament led to increased local joint mechanical instability. Then DMM-induced OA models were administered with normal saline and toluidine blue in each individual??s right knee joint. Besides, histological assessment was made with OARSI score system after the knee joints were collected. Results DMM-induced sections exhibited irregular articular surface and reduced Safranin O fast green staining in weight-bearing area, compared with sham group. According to the site-specific OARSI score system, medial femoral condyle (MFC) was 3.417±0.6421 (n=12) and medial tibial condyle (MTP) was 9.583±0.8115 (n=12) in DMM group. In comparison with sham group (MFC: 0.4167±0.1486, MTP: 0.5833±0.1486, respectively), there was a significant difference (P=0.0002, P<0.0001, respectively). Additionally, with the imaging system we established previously, the femoral and tibial articular cartilages were found labeled with toluidine blue staining. Conclusion Typical OA progression was presented in DMM-induced OA model through OARSI system assessment. The procedure could improve the positive results when we performed micro-aspiration in OA model of C57BL/6 mice, indicating that micro-injection method in mouse knee joint cavity is repeatable and reliable in vivo
[1] | MA HL, BLANCHET TJ, PELUSO D, et al. Osteoarthritis severity is sex dependent in a surgical mouse model[J]. Osteoarthr Cartil, 2007, 15(6):695-700. |
[2] | GLASSON SS, CHAMBERS MG, VAN DEN BERG WB, et al. The OARSI histopathology initiative--recommendations for histological assessments of osteoarthritis in the mouse[J]. Osteoarthr Cartil, 2010, 18(S13):S17-S23. |
[3] | GLYN-JONES S, PALMER AJ, AGRICOLA R, et al. Osteoarthritis[J]. Lancet, 2015, 386(9991):376-387. |
[4] | LOESER RF, GOLDRING SR, SCANZELLO CR, et al. Osteoarthritis: A disease of the joint as an organ[J]. Arthritis Rheum, 2012, 64(6):1697-1707. |
[5] | LAWRENCE RC, FELSON DT, HELMICK CG, et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II[J]. Arthritis Rheum, 2008, 58(1):26-35. |
[6] | GOUTTEBARGE V, INKLAAR H, BACKX F, et al. Prevalence of osteoarthritis in former elite athletes: A systematic overview of the recent literature[J]. Rheumatol Int, 2015, 35(3):405-418. |
[7] | GLASSON SS, BLANCHET TJ, MORRIS EA. The surgical destabilization of the medial meniscus (DMM) model of osteoarthritis in the 129/SvEv mouse[J]. Osteoarthr Cartil, 2007, 15(9):1061-1069. |
[8] | MATSUZAKI T, MATSUSHITA T, TABATA Y, et al. Intra-articular administration of gelatin hydrogels incorporating rapamycin-micelles reduces the development of experimental osteoarthritis in a murine model[J]. Biomaterials, 2014, 35(37):9904-9911. |
[9] | TAKAYAMA K, KAWAKAMI Y, KOBAYASHI M, et al. Local intra-articular injection of rapamycin delays articular cartilage degeneration in a murine model of osteoarthritis[J]. Arthritis Res Ther, 2014, 16(6):482. |
[10] | KIM BJ, CHOI BH, JIN L, et al. Comparison between subchondral bone change and cartilage degeneration in collagenase- and DMM-induced osteoarthritis (OA) models in mice[J]. Tissue Eng Regen Med, 2013, 10(4):211-217. |
[11] | HASHIMOTO S, RAI MF, JANISZAK KL, et al. Cartilage and bone changes during development of post-traumatic osteoarthritis in selected LGXSM recombinant inbred mice[J]. Osteoarthr Cartil, 2012, 20(6):562-571. |
[12] | PRITZKER KPH, GAY S, JIMENEZ SA, et al. Osteoarthritis cartilage histopathology: Grading and staging[J]. Osteoarthr Cartil, 2006,14(1):13-29. |
[13] | LI W, CAI L, ZHANG Y, et al. Intra-articular resveratrol injection prevents osteoarthritis progression in a mouse model by activating SIRT1 and thereby silencing HIF-2alpha[J]. J Orthop Res, 2012, 33(7):1061-1070. |
[14] | SASAKI H, TAKAYAMA K, MATSUSHITA T, et al. Autophagy modulates osteoarthritis-related gene expression in human chondrocytes[J]. Arthritis Rheum, 2012, 64(6):1920-1928. |
[15] | LI F, YIN Z, WU H, et al. Section of the anterior cruciate ligament in the rabbit as animal model for osteoarthritis progression[J]. Int Orthop, 2016, 40(2):407-416. |
[16] | 冯萌,邱裕生,陈迁,等. 骨关节炎骨软骨损伤修复的研究现状[J]. 中国矫形外科杂志, 2016, 24(14):1295-1298. |
[17] | ROWE MA, HARPER LR, MCNULTY MA, et al. Reduced osteoarthritis severity in aged mice with deletion of macrophage migration inhibitory factor[J]. Arthritis Rheum, 2017, 69(2):352-361. |