|
- 2015
小鼠骨关节炎模型中胫骨软骨下骨微结构的Micro-CT分析
|
Abstract:
摘要:目的 应用显微CT(Micro-CT)技术观察和分析小鼠骨关节炎模型中软骨下骨微结构的变化,为进一步了解软骨下骨在骨关节炎疾病发展中的作用提供一定的实验基础。方法 野生型小鼠12只,随机均分为内侧半月板-胫骨韧带切断术组(DMM组)和对照组(假手术组)。术后8周,取两组动物术侧全膝关节置于Micro-CT仪器中进行扫描,应用三维重建处理和分析软件对内侧胫骨平台软骨下骨全部及其外、中、内1/3三个亚区域的骨体积分数(BV/TV)、骨小梁厚度(Tb.Th)、骨小梁数量(Tb. N)、骨小梁分离度(Tb.Sp)和组织骨密度(TMD)进行检测,并行膝关节的病理组织学染色。 结果 与对照组比较,DMM实验组小鼠在Micro-CT成像和组织学染色上均出现软骨下骨骨小梁增宽、致密、排列紊乱不均匀等表现,关节内侧缘可见骨赘形成;在全部亚区域的Tb.Th、外1/3亚区域的BV/TV与TMD、中1/3亚区域的BV/TV、Tb.Th与TMD、内1/3亚区域的Tb.Th均升高,而在全部亚区域的Tb.N、外1/3亚区域的Tb.Sp、中1/3亚区域的Tb.N与Tb.Sp、内1/3亚区域的BV/TV与Tb.N均降低。结论 对小鼠DMM骨关节炎模型的胫骨软骨下骨多个亚区域进行微结构的Micro-CT测量分析可获得小鼠模型更加全面的数据资料。
ABSTRACT: Objective To analyze the subchondral-bone microstructure in a mouse model of osteoarthritis (OA) via micro-CT technology so as to provide experimental basis for further study of subchondral bone during the development of osteoarthritis. Methods Twelve wild-type mice were randomly divided into DMM (destabilization of the medial meniscus) group and control (sham operation) group. All the knee joints for surgery from the two groups were scanned by micro-CT equipment, reconstructed and analyzed to acquire data of bone volume fraction (BV/TV), trabecular thickness (Tb. Th), trabecular number (Tb.N), trabecular separation (Tb.Sp) and tissue mineral density (TMD) from the total, outer, middle, and inner 1/3 compartments of subchondral bone in medial tibial plateau 8 weeks after surgery. Histological staining was also applied. Results Compared with those in control group, extended, denser and uneven trabeculae and osteophyte formation from micro-CT imaging and histology were observed in the subchondral bone of DMM-induced mice. There were higher Tb. Th in total, BV/TV and TMD in outer 1/3, BV/TV, Tb. Th and TMD in middle 1/3, and Tb. Th in inner 1/3 compartments, while there were correspondingly lower Tb. N in total, Tb. Sp in outer 1/3, Tb. N and Tb. Sp in middle 1/3, BV/TV and Tb. N in inner 1/3 compartments. Conclusion More comprehensive data could be acquired from the microstructure of subchondral-bone compartments by micro-CT analysis in the mouse model of DMM-induced OA
[1] | LEYH M, SEITZ A, DURSELEN L, et al. Subchondral bone influences chondrogenic differentiation and collagen production of human bone marrow-derived mesenchymal stem cells and articular chondrocytes[J]. Arthritis Res Ther, 2014, 16(5):453. |
[2] | ATKINS GJ, FINDLAY DM. Osteocyte regulation of bone mineral: a little give and take[J]. Osteoporos Int, 2012, 23(8):2067-2079. |
[3] | LOZITO TP, ALEXANDER PG, LIN H, et al. Three-dimensional osteochondral microtissue to model pathogenesis of osteoarthritis[J]. Stem Cell Res Ther, 2013, 4 Suppl 1:S6. |
[4] | 杨益民,王民,李萌. 氨基胍对兔骨关节炎软骨细胞凋亡的影响[J]. 西安交通大学学报:医学版, 2008, 29(3):285-288. |
[5] | ABRAMSON SB, ATTUR M. Developments in the scientific understanding of osteoarthritis[J]. Arthritis Res Ther, 2009, 11(3):227. |
[6] | FELSON DT. An update on the pathogenesis and epidemiology of osteoarthritis[J]. Radiol Clin North Am, 2004, 42(1):1-9. |
[7] | FELSON DT, NEOGI T. Osteoarthritis: is it a disease of cartilage or of bone?[J]. Arthritis Rheum, 2004, 50(2):341-344. |
[8] | IIJIMA H, AOYAMA T, ITO A, et al. Destabilization of the medial meniscus leads to subchondral bone defects and site-specific cartilage degeneration in an experimental rat model[J]. Osteoarthr Cartil, 2014, 22(7):1036-1043. |
[9] | GLASSON SS, BLANCHET TJ, MORRIS EA. The surgical destabilization of the medial meniscus (DMM) model of osteoarthritis in the 129/SvEv mouse[J]. Osteoarthr Cartil, 2007, 15(9):1061-1069. |
[10] | RUBIN C, TURNER AS, MULLER R, et al. Quantity and quality of trabecular bone in the femur are enhanced by a strongly anabolic, noninvasive mechanical intervention[J]. J Bone Miner Res, 2002, 17(2):349-357. |
[11] | FINDLAY DM, ATKINS GJ. Osteoblast-chondrocyte interactions in osteoarthritis[J]. Curr Osteoporos Rep, 2014, 12(1):127-134. |
[12] | MANSELL JP, COLLINS C, BAILEY AJ. Bone, not cartilage, should be the major focus in osteoarthritis[J]. Nat Clin Pract Rheumatol, 2007, 3(6):306-307. |
[13] | ZAMLI Z, ROBSON BK, TARLTON JF, et al. Subchondral bone plate thickening precedes chondrocyte apoptosis and cartilage degradation in spontaneous animal models of osteoarthritis[J]. Biomed Res Int, 2014, 2014:606870. |
[14] | WANG X, ZAUEL RR, RAO DS, et al. Cancellous bone lamellae strongly affect microcrack propagation and apparent mechanical properties: separation of patients with osteoporotic fracture from normal controls using a 2D nonlinear finite element method (biomechanical stereology)[J]. Bone, 2008, 42(6):1184-1192. |
[15] | GIELKENS PF, SCHORTINGHUIS J, DE JONG JR, et al. A comparison of micro-CT, microradiography and histomorphometry in bone research[J]. Arch Oral Biol, 2008, 53(6):558-566. |
[16] | BOUXSEIN ML, BOYD SK, CHRISTIANSEN BA, et al. Guidelines for assessment of bone microstructure in rodents using micro-computed tomography[J]. J Bone Miner Res, 2010, 25(7):1468-1486. |
[17] | 王佰亮,丁铭. Micro-CT技术在股骨头微观结构分析中的应用[J]. 中华骨科杂志, 2010, 30(2):209-212. |
[18] | FLECKNELL P. Replacement, reduction and refinement[J]. Altex, 2002, 19(2):73-78. |
[19] | BONEWALD LF. The amazing osteocyte[J]. J Bone Miner Res, 2011, 26(2):229-238. |