全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

基于ARIMA模型预测梅毒月发病率的价值
Application of ARIMA model in predicting monthly incidence of syphilis

DOI: 10.7652/jdyxb201801028

Keywords: 梅毒,ARIMA模型,月发病率,预测
syphilis
,autoregressive integrated moving average model (ARIMA),monthly incidence,prediction

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要:目的 探讨建立ARIMA模型在梅毒月发病率预测中的应用价值,为梅毒防控工作提供依据。方法 运用Eviews8.0软件对2009年1月-2015年12月我国梅毒月发病率数据建立ARIMA模型,利用2016年1月-6月实际数据验证,评价模型精度指标采用均方根误差(root mean squared error, RMSE)、平均绝对误差(mean absolute error, MAE)、平均绝对百分误差(mean absolute percentage error, MAPE)、平均相对误差(mean relative error, MRE)。同法外推预测2016年7月-12月全国梅毒月发病率。结果 2009年1月-2016年6月全国梅毒月发病率最优模型是ARIMA(2,1,1)×(0,1,1)12,模型表达式为:(1-B)(1-B12)(1+0.820B) (1+0.566B2) x2t=(1+0.365B) (1+0.897B12)εt,R2=0.832,RMSE=0.181,MAE=0.118,MAPE=5.088。外推2016年7月-12月预测结果分别为3.124、3.008、2.906、2.691、2.714、2.717。结论 ARIMA模型具有较高的预测精度,可较好地拟合我国梅毒月发病率的演变趋势并进行短期预测。
ABSTRACT: Objective To explore the value of the autoregressive integrated moving average model (ARIMA) applied to predict monthly incidence of syphilis so as to provide basis for prevention and control of syphilis. Methods Eviews 8.0 was used to establish the ARIMA model based on the data of monthly incidence of syphilis in China from January 2009 to December 2015. Then the data of the first half of 2016 were used to verify the predicted results. The predictions were evaluated by RMSE, MAE, MAPE and MRE models. Then the monthly incidence of syphilis in the second half of 2016 was predicted. Results The optimal model for the monthly incidence of syphilis from January 2009 to June 2016 was the model of ARIMA (2,1,1)×(0,1,1)12, its equation was (1-B)(1-B12) (1+0.820B)(1+0.566B2)x2t=(1+0.365B)(1+0.897B12)εt, its parameters are as follows: R2=0.832, RMSE=0.181, MAE=0.118, MAPE=5.088. The predicted monthly incidence values (10-5) of the second half of 2016 were 3.124, 3.008, 2.906, 2.691, 2.714, and 2.717. Conclusion ARIMA model has a relatively good prediction precision. Therefore, it can make short-term prediction based on the evolution trend of monthly incidence of syphilis in China

References

[1]  WANG T, ZHOU Y, WANG L, et al. Using an autoregressive integrated moving average model to predict the incidence of hemorrhagic fever with renal syndrome in Zibo, China, 2004-2014[J]. Jpn J Infect Dis, 2016, 69(4):279-284.
[2]  范引光,吕金伟,戴色莺,等. ARIMA模型与灰色预测模型GM(1,1)在HIV感染人数预测中的应用[J]. 中华疾病控制杂志, 2012, 16(12):1100-1103.
[3]  CHEN B, SUMI A, TOYODA S, et al. Time series analysis of reported cases of hand, foot, and mouth disease from 2010 to 2013 in Wuhan, China[J].
[4]  ZHANG X, PANG Y, CUI M, et al. Forecasting mortality of road traffic injuries in China using seasonal autoregressive integrated moving average model[J]. Ann Epidemiol, 2015, 25(2):101-106.
[5]  LOCH H, JANCZURA J, WERON A. Ergodicity testing using an analytical formula for a dynamical functional of alpha-stable autoregressive fractionally integrated moving average processes[J]. Phys Rev E, 2016, 93(4):1-10.
[6]  SONG Y, WANG F, WANG B, et al. Time series analyses of hand, foot and mouth disease integrating weather variables[J]. PLoS One, 2015, 10(3):1-18.
[7]  ZHANG X, ZHANG T, YOUNG AA, et al. Applications and comparisons of four time series models in epidemiological surveillance data[J]. PLoS One, 2014, 9(2):1-16.
[8]  马殿梅,王永斌,刘晓坤,等. 四种模型在我国梅毒发病率预测中的应用[J]. 中国艾滋病性病, 2016, 22(3):189-193.
[9]  王小丽,杨永利,施学忠,等. 几种预测模型对中国梅毒发病率预测效果的比较[J]. 郑州大学学报(医学版), 2015, 50(2):164-167.
[10]  易丹辉. 统计预测:方法与应用[M]. 第二版. 北京:中国人民大学出版社, 2014:177-216.
[11]  SONG X, XIAO J, DENG J, et al. Time series analysis of influenza incidence in Chinese provinces from 2004 to 2011[J]. Medicine (Baltimore), 2016, 95(26):1-7.
[12]  ZHANG X, ZHANG T, PEI J, et al. Time series modelling of syphilis incidence in China from 2005 to 2012[J]. PLoS One, 2016, 11(2):1-18.
[13]  王燕. 应用实践序列分析[M]. 第三版. 北京:中国人民大学出版社, 2014:149-197.
[14]  BMC Infect Dis, 2015, 15(3):1-15.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133