全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

糖尿病心肌缺血大鼠骨髓干细胞动员及心肌组织细胞因子的表达
Bone marrow stem cell mobilization and cytokines expression in ischemic myocardium in diabetic rats with myocardial ischemia

DOI: 10.7652/jdyxb201701006

Keywords: 心肌缺血,糖尿病,骨髓干细胞,血管内皮生长因子,肿瘤坏死因子α
myocardial ischemia
,diabetes,bone marrow stem cell,vascular endothelial growth factor (VEGF),tumor necrosis factor α (TNFα)

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要:目的 探讨糖尿病心肌缺血大鼠外周血骨髓干细胞动员和归巢的变化以及缺血心肌组织中血管内皮生长因子和肿瘤坏死因子α的表达变化。方法 首先采用链脲佐菌素腹腔注射建立雄性SD大鼠糖尿病模型,然后通过开胸结扎冠状动脉左前降支建立糖尿病心肌缺血模型,并分为缺血1d组、缺血3d组、缺血7d组、缺血28d组;另设相应时间点的糖尿病对照组(开胸但不进行动脉结扎)和正常对照组(不进行腹腔注射和动脉结扎),每组6只。应用流式细胞术测定各组大鼠的外周血单个核细胞中CD34+细胞百分率;应用免疫组化法观察各组动物缺血心肌中CD34+细胞归巢以及血管内皮生长因子和肿瘤坏死因子α的表达。结果 大鼠糖尿病心肌缺血组于术后出现骨髓干细胞动员,1周内达高峰,随时间延长减弱;同时术后1周内缺血心肌组织中相应地出现骨髓干细胞归巢以及血管内皮生长因子和肿瘤坏死因子α表达明显增加。结论 糖尿病缺血心肌早期可通过组织局部血管内皮生长因子和肿瘤坏死因子α表达升高而动员骨髓干细胞进入外周血,并归巢至缺血心肌,从而启动自体保护机制。
ABSTRACT: Objective To investigate the bone marrow stem cell mobilization and homing changes of peripheral blood due to diabetic myocardial ischemia in rats and the change of expression of the vascular endothelial growth factor (VEGF) and the tumor necrosis factor α (TNFα) in ischemic myocardial tissue. Methods The diabetic model of male Sprague-Dawley rats was created by intraperitoneal injection of streptozotocin first. Then the diabetic myocardial ischemia model was established through ligation of the left anterior descending coronary artery. The rats were divided into ischemic day-1, day-3, day-7, and day-28 groups. And their time-matching diabetic sham operation control group and normal sham operation control group were also established, with 6 rats in each group. Flow cytometry was used to measure the percentage of CD34+ cells in peripheral blood mononuclear cells for each group. Immunohistochemistry was used to observe the homing of CD34+ cells and the expression of VEGF and TNFα in the ischemic myocardium. Results The mobilization of bone marrow stem cells was initiated after the surgery in the rat models of myocardial ischemia in diabetes and it peaked within 1 week and decreased with the passage of time. Accordingly the homing of CD34+ cells and the expressions of VEGF and TNFα in the ischemic myocardium were significantly increased. Conclusion During the early stage, the diabetic ischemic myocardium can mobilize bone marrow stem cells into the peripheral blood and start homing to the ischemic myocardium by increasing VEGF and TNFα in the ischemic myocardium, thereby initiating the self-protection mechanisms

References

[1]  SHIMOKAWAHARA H, JOUGASAKI M, SETOGUCHI M, et al. Relationship between vascular endothelial growth factor and left ventricular dimension in patients with acute myocardial infarction[J]. J Cardiol, 2014, 64(5):360-365.
[2]  JIMENEZ-NAVARRO MF, GONZALEZ FJ, CABALLERO-BORREGO J, et al. Coronary disease extension determines mobilization of endothelial progenitor cells and cytokines after a first myocardial infarction with ST elevation[J]. Rev Esp Cardiol, 2011, 64(12):1123-1129.
[3]  KURTAGIC E, RICH CB, BUCZEK-THOMAS JA, et al. Neutrophil elastase-generated fragment of vascular endothelial growth factor-A stimulates macrophage and endothelial progenitor cell migration[J]. PLoS One, 2015, 10(12):e0145115.
[4]  陈林,桂春,韦晓敏,等. 血管生成因子在糖尿病大鼠心肌组织的表达[J]. 中国病理生理杂志, 2014, 30(6):1098-1102.
[5]  ZHANG O, JI Q, LIN Y, et al. Circulating chemerin levels elevated in dilated cardiomyopathy patients with overt heart failure[J]. Clin Chim Acta, 2015, 448: 27-32.
[6]  ZARROUK-MAHJOUB S, ZAGHDOUDI M, AMIRA Z, et al. Pro- and anti-inflammatory cytokines in post-infarction left ventricular remodeling[J]. Int J Cardiol, 2016, 221:632-636.
[7]  PRABHU SD, FRANGOGIANNIS NG. The biological basis for cardiac repair after myocardial infarction: from inflammation to fibrosis[J]. Circ Res, 2016, 119(1):91-112.
[8]  LIU J, WANG H, LI J. Inflammation and inflammatory cells in myocardial infarction and reperfusion injury: a double-edged sword[J]. Clin Med Insights Cardiol, 2016, 10:79-84.
[9]  赵娅,刘飞,古远云,等. 胰蛋白酶与2型糖尿病心肌病发病机制[J]. 重庆医科大学学报, 2015, 40(7):997-1000.
[10]  孙晓慧,牟艳玲. 糖尿病心肌病血清标志物的研究进展[J]. 山东医药, 2015, 55(41):96-98.
[11]  REGUEIRO A, CUADRADO-GODIA E, BUENO-BETI C, et al. Mobilization of endothelial progenitor cells in acute cardiovascular events in the PROCELL study: time-course after acute myocardial infarction and stroke[J]. J Mol Cell Cardiol, 2015, 80:146-155.
[12]  TSAI JL, LEE YM, PAN CY, et al. The novel VEGF121-VEGF165 fusion attenuates angiogenesis and drug resistance via targeting VEGFR2-HIF-1a-VEGF165/Lon signaling through PI3K-AKT-mTOR pathway[J]. Curr Cancer Drug Targets, 2016, 16(3):275-286.
[13]  KOWALCZYK J, MAZUREK M, ZIELINSKA T, et al. Prognostic significance of HbA1c in patients with AMI treated invasively and newly detected glucose abnormalities[J]. Eur J Prev Cardiol, 2015, 22(6):798-806.
[14]  YIN T, HOU R, LIU S,et al. Nitrative inactivation of thioredoxin-1 increases vulnerability of diabetic heart to ischemia/reperfusion injury[J]. J Mol Cell Cardiol, 2010, 49:354-361.
[15]  SAFARI S, MALEKVANDFARD F, BABASHAH S, et al. Mesenchymal stem cell-derived exosomes: A novel potential therapeutic avenue for cardiac regeneration[J]. Cell Mol Biol, 2016, 62(7):66-73.
[16]  GAO F, HOU H, LIANG H, et al. Bone marrow-derived cells in ocular neovascularization: contribution and mechanisms[J]. Angiogenesis, 2016, 19(2):107-118.
[17]  HOBAN MD, LUMAQUIN D, KUO CY, et al. CRISPR/Cas 9-mediated correction of the sickle mutation in human CD34+ cells[J]. Mol Ther, 2016, 24(9):1561-1569.
[18]  WEGENER M, BADER A, GIRI S. How to mend a broken heart: adult and induced pluripotent stem cell therapy for heart repair and regeneration[J]. Drug Discov Today, 2015, 20(6):667-685.
[19]  HUANG J, GE M, LU S, et al. Impaired autophagy in adult bone marrow CD34<sup>+</sup> cells of patients with aplastic anemia: possible pathogenic significance[J]. PLoS One, 2016, 11(3):e0149586.
[20]  窦立冬,崔晓兰,陈建河,等. 粒细胞集落刺激因子动员2型糖尿病患者外周血CD34+细胞的变化[J]. 中国组织工程研究与临床康复, 2011, 15(23):4295-4298.
[21]  KUMARATHURAI P, ANHOLM C, NIELSEN OW, et al. Effects of the glucagon-like peptide-1 receptor agonist liraglutide on systolic function in patients with coronary artery disease and type 2 diabetes: a randomized double-blind placebo-controlled crossover study[J ]. Cardiovasc Diabetol, 2016, 15(1):105.
[22]  SOMASUNTHARAM I, YEHL K, CARROLL SL, et al. Knockdown of TNF-α by DNAzyme gold nanoparticles as an anti-inflammatory therapy for myocardial infarction[J]. Biomaterials, 2016, 83:12-22.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133