全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

MiR-106a作用于TIMP2诱导人胃癌BGC-823细胞的腹腔种植转移
MiR-106a induces peritoneal metastasis through acting on TIMP2 in human gastric cancer cell BGC-823

DOI: 10.7652/jdyxb201804011

Keywords: 胃癌,BGC-823,微小RNA,基质金属蛋白酶,种植性转移
gastric cancer
,BGC-823,miRNA,metalloproteinases,peritoneal metastasis

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要:目的 探讨微小RNA(microRNA-106a, miR-106a)通过调节基质金属蛋白酶抑制物2(tissue inhibitor of metalloproteinases 2, TIMP2)的表达而诱导人胃癌BGC-823细胞的腹腔种植转移。方法 人胃癌细胞株BGC-823传代培养至对数生长期。细胞分3组:胃癌细胞BGC-823组、BGC-823/anti-miR-106a(拮抗剂)组和BGC-823/negative control组。Real-time PCR鉴定拮抗效果。Transwell法检测细胞体外迁移侵袭能力。以小切口注射方式制备裸鼠腹腔内移植瘤模型,动物分2组:miR-antagomir组和miR-NC组。大体观察裸鼠胃癌移植瘤生长情况。免疫组化法和Western印迹法联合检测TIMP2在腹腔内各器官上的表达。结果 BGC-823/anti-miR-106a组miR-106a表达下调,降低倍数2-△△Ct=0.05±0.01,与NC组相比具有统计学差异(t=-18.001,P<0.001)。细胞水平外源性沉默miR-106a基因,BGC-823/anti-miR-106a组迁移、侵袭的细胞数量均低于BGC-823和BGC-823/negative control组,差异均有统计学意义(P<0.001)。移植瘤体内实验显示miR-106a表达下调削弱BGC-823细胞在裸鼠腹腔内的种植转移能力,表现为种植瘤结节数量和体积的减少;当miR-106a表达受抑时,免疫组化法和印迹法均显示miR-antagomir组TIMP2蛋白表达量高于miR-NC组,差异有统计学意义(P<0.05)。结论 BGC-823细胞株具备裸鼠成瘤能力,沉默miR-106a抑制胃癌细胞的侵袭转移提示其具有癌基因样作用;miR-106a可能通过作用于TIMP2诱导BGC-823细胞腹腔种植转移能力增强。
ABSTRACT: Objective To investigate the induction of microRNA (microRNA-106a, miR-106a) on the peritoneal metastasis of human gastric cancer cell BGC-823 by regulating matrix metalloproteinase inhibitor 2 (tissue inhibitor of metalloproteinases 2, TIMP2). Methods Human gastric cancer cell line BGC-823 was cultured to the logarithmic growth phase. The cells were divided into three groups: BGC-823, BGC-823/anti-miR-106a (antagomir) and BGC-823/negative control. Real-time PCR was used to identify the effect of antagomir. Transwell assay was used to detect the cell migratory and invasive abilities of these three groups in vitro. With small incision, the cells were injected into the abdominal cavity of nude mice to prepare a xenograft model. The animals were divided into two groups: miR-antagomir and miR-NC. The tumor growth in the nude mice was generally observed and estimated. Immunohistochemistry and Western blot methods were used to detect the expression of metastasis-associated protein TIMP2 on the several abdominal organs. Results The expression level of miR-106a was down-regulated in BGC-823/anti-miR-106a group, with the fold change of 0.05±0.01, which was significantly different from that in NC group (t=-18.001,P<0.001). In vitro exogenously silencing of miR-106a gene, the numbers of invasive and migratory cells in BGC-823/anti-miR-106a group were both significantly lower than those in BGC-823 and BGC-823/negative control groups (P<0.001). In vivo xenograft model showed that the down-regulation of miR-106a weakened the peritoneal metastasis ability of BGC-823 cells in nude mice abdominal cavity, which was reflected by the decrease of tumor number and tumor size. With the inhibition of miR-106a, the expression of TIMP2 in

References

[1]  WANG J, SUN Y, BERTAGNOLLI MM. Comparison of gastric cancer survival between Caucasian and Asian patients treated in the United States: Results from the Surveillance Epidemiology and End Results (SEER) database[J]. Ann Surg Oncol, 2015, 22(9):2965-2971.
[2]  KOBAYASHI D, KODERA Y. Intraperitoneal chemotherapy for gastric cancer with peritoneal metastasis[J]. Gastric Cancer, 2017, 20(Suppl 1):111-121.
[3]  LIANG P, HU X. Strategies of diagnosis and treatment for peritoneal metastasis of gastric cancer[J]. Zhonghua Wei Chang Wai Ke Za Zhi, 2017, 20(5):500-503.
[4]  ZHAO X, LI X, YUAN H. microRNAs in gastric cancer invasion and metastasis[J]. Front Biosci (Landmark Ed), 2013, 18:803-810.
[5]  陈谦,柯娟,王纪全,等. 大肠腺癌中基质金属蛋白酶-2、9及其抑制剂-1、2的表达[J]. 西安交通大学学报(医学版), 2009, 30(4):474-477.
[6]  ZHANG Y, WU YY, JIANG JN, et al. MiRNA-3978 regulates peritoneal gastric cancer metastasis by targeting legumain[J]. Oncotarget, 2016, 7(50):83223-83230.
[7]  XIN R, BAI F, FENG Y, et al. MicroRNA-214 promotes peritoneal metastasis through regulating PTEN negatively in gastric cancer[J]. Clin Res Hepatol Gastroenterol, 2016, 40(6):748-754.
[8]  SHI Z, WEI Q, SHE J. MicroRNAs in gastric cancer metastasis[J]. Crit Rev Eukaryot Gene Expr, 2014, 24(1):39-53.
[9]  MAEHARA Y, HASUDA S, KOGA T, et al. Postoperative ossssutcome and sites of recurrence in patients following curative resection of gastric cancer[J]. Br J Surg, 2000, 87(3):353-357.
[10]  Paget S. The distribution of secondary growths in cancer of the breast[J]. The Lancet, 1889, 133(3421):571-573.
[11]  FIDLER IJ. The pathogenesis of cancer metastasis: the ’seed and soil’ hypothesis revisited[J]. Nat Rev Cancer, 2003, 3(6):453-458.
[12]  KIYASU Y, KANESHIMA S, KOGA S. Morphogenesis of peritoneal metastasis in human gastric cancer[J]. Cancer Res, 1981, 41(3):1236-1239.
[13]  FURUKAWA T, FU X, KUBOTA T, et al. Nude mouse metastatic models of human stomach cancer constructed using orthotopic implantation of histologically intact tissue[J]. Cancer Res, 1993, 53(5):1204-1208.
[14]  LI K, DU H, LIAN X, et al. Establishment and characterization of a metastasis model of human gastric cancer in nude mice[J]. BMC Cancer, 2016, 16:54.
[15]  HAMMOND SM. An overview of microRNAs[J]. Adv Drug Deliv Rev, 2015, 87:3-14.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133