全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

脑外伤后T型钙通道对神经干细胞增殖的诱导作用
T type calciumchannel activated by brain injury induces neural stem cell proliferation

DOI: 10.7652/jdyxb201604004

Keywords: 脑外伤,神经干细胞,T型钙通道,米贝地尔,细胞周期,Cav3.2,Cyclin A,caspase-3
brain injury
,neural stem cell,T type calcium channel,mebefradil,cell cycle,Cav3.2,Cyclin A,caspase-3

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要:目的 探讨脑外伤后T型钙通道对神经干细胞的诱导作用及其相关机制。方法 构建成年大鼠脑损伤模型,分为手术组和手术+米贝地尔组(米贝地尔组),并另设正常对照组、假手术组。分离侧脑室壁的脑室下层(subventricular zone, SVZ)细胞,用神经干细胞悬浮培养法进行培养并鉴定其干细胞性质;在神经干细胞培养基中加入不同剂量的米贝地尔,通过计数神经干细胞球、噻唑蓝(MTT)法分析米贝地尔对神经干细胞增殖抑制作用,计算米贝地尔对神经干细胞的半抑制浓度(IC50),Western blot法检测脑组织中Cav3.2以及神经干细胞中Cav3.2、Cyclin A和caspase-3的蛋白表达。结果 体内实验表明,手术组中神经干细胞的增殖能力显著高于正常对照组和假手术组,应用米贝地尔腹腔注射抑制脑组织中T型钙通道后,神经干细胞的增殖明显降低。体外细胞实验表明,米贝地尔能够明显抑制神经干细胞球的形成,MTT法显示米贝地尔浓度大于5μmol/L时,可显著抑制细胞增殖,5、10、20μmol/L组的吸光度(A值)与对照组比较,差异具有统计学意义(P<0.05)。IC50值为8.93μmol/L。Western blot检测结果显示,米贝地尔组的Cav3.2蛋白和Cyclin A蛋白的表达显著降低,caspase-3蛋白的表达显著升高。 结论 脑外伤后可激活脑组织中T型钙通道,上调神经干细胞的增殖能力。
ABSTRACT: Objective To investigate the mechanism and induction of T type calcium channel on neural stem cells after brain injury. Methods Adult mice brain injury model was established and divided into control, sham operation, surgery, and surgery+mebefradil groups. Neural stem cells were separated from the subventricular zone (SVZ) and identified. Moreover, we analyzed the results using MTT and neural stem cell sphere counting after adding different doses of mibefradil in culture medium, respectively. Then we calculated the half maximal inhibitory concentration (IC50) of mibefradil on neural stem cells. Finally, we analyzed the expression of Cav3.2 in SVZ and the protein expressions of Cav3.2, Cyclin A and caspase-3 in neural stem cells by Western blot. Results In vivo, neural stem cell proliferation was increased in surgery group compared with that in control and sham-operation groups. The proliferation of neural stem cells in surgery+mibefradil groups was significantly decreased compared with that in surgery group after mibefradil-induced inhibition of T type calcium channel protein. In vitro, the formation of neural stem cell sphere was significantly inhibited after adding mibefradil. The cell growth ratio was significantly decreased when the concentration of mibefradil was above 5μmol/L. A values in 5μmol/L, 10μmol/L and 20μmol/L groups were significantly lower than those in control group (P<0.05). IC50 was 8.93μmol/L. The protein expressions of Cyclin A and Cav3.2 were inhibited while that of caspase-3 was increased after mibefradil treatment. Conclusion Neural stem cell proliferation was enhanced by activating T type calcium channel after brain injury

References

[1]  屈建强,贺西京,杨平林,等. 液压性脑损伤后室下区神经干细胞的分离培养与鉴定[J]. 中华神经外科疾病研究杂志, 2007, 6(5):396-399.
[2]  YU W, WANG P, MA H, et al. Suppression of T-type Ca<sup>2+</sup> channels inhibited human laryngeal squamous cell carcinoma cell proliferation running title: roles of T-type Ca<sup>2+</sup> channels in LSCC cell proliferation[J]. Clin Lab, 2014, 60(4):621-628.
[3]  LU Y, LONG M, ZHOU S, et al. Mibefradil reduces blood glucose concentration in db/db mice[J]. Clinics (Sao Paulo), 2014, 69(1):61-67.
[4]  WEN XJ, XU SY, CHEN ZX, et al. The roles of T-type calcium channel in the development of neuropathic pain following chronic compression of rat dorsal root ganglia[J]. Pharmacology, 2010, 85(5):295-300.
[5]  CHEONG E, SHIN HS. T-type Ca<sup>2+</sup> channels in normal and abnormal brain functions[J]. Physiol Rev, 2013, 93(3):961-992.
[6]  MCKAY BE, MCRORY JE, MOLINEUX ML, et al. Ca(V)3 T-type calcium channel isoforms differentially distribute to somatic and dendritic compartments in ratcentral neurons[J]. Eur J Neurosci, 2006, 24(9):2581-2594.
[7]  ENGBERS JD, ANDERSON D, ZAMPONI GW, et al. Signal processing by T-type calcium channel interactions in the cerebellum[J]. Front Cell Neurosci, 2013, 27(7):230.
[8]  YUE J, LIU L, LIU Z, et al. Upregulation of T-type Ca<sup>2+</sup> channels in primary sensory neurons in spinal nerve injury[J]. Spine (Phila Pa 1976), 2013, 38(6):463-470.
[9]  傅西安,高国一,蒲军,等. PPAR-γ在液压脑损伤大鼠皮层的表达[J]. 中华神经外科疾病研究杂志, 2014, 13(4):326-328.
[10]  LOZANO D, GONZALES-PORTILLO GS, ACOSTA S, et al. Neuroinflammatory responses to traumatic brain injury: etiology, clinical consequences, and therapeutic opportunities[J]. Neuropsychiatr Dis Treat, 2015, 8(11):97-106.
[11]  XIAO L, SAIKI C, IDE R. Stem cell therapy for central nerve system injuries: glial cells hold the key[J]. Neural Regen Res, 2014, 9(13):1253-1260.
[12]  RODRIQUEZ-GOMEZ JA, LEVITSKY KL, LOPEZ-BARNEO J. T-type Ca<sup>2+</sup> channels in mouse embryonic stem cells: modulation during cell cycle and contribution to self-renewal[J]. Am J Physiol Cell Physiol, 2012, 302(3):C494-504.
[13]  DAI L, LIU Y, LIU J, et al. A novel cyclinE/cyclinA-CDK inhibitor targets p27(Kip1) degradation, cell cycle progression and cell survival: implications in cancer therapy[J]. Cancer Lett, 2013, 333(1):103-112.
[14]  NGRYEN TD, WIDERA D, GREINER J, et al. Prolonged cultivation of hippocampal neural precursor cells shifts their differentiation potential and selects for aneuploid cells[J]. Biol Chem, 2013, 394(12):1623-1636.
[15]  吕楠,肖波. T型钙离子通道在癫痫发生中的作用研究进展[J]. 中国神经精神疾病杂志, 2013, 39(7):447-449.
[16]  DAS A, PUSHPARAJ C, HERREROS J, et al. T-type calcium channel blockers inhibit autophagy and promote apoptosis of malignant melanoma cells[J]. Pigment Cell Melanoma Res, 2013, 26(6):874-885.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133