|
- 2017
心力衰竭中枢发病机制的研究进展
|
Abstract:
摘要:心力衰竭(简称心衰)是一种复杂的临床综合征,任何心室结构或功能受损所导致的充盈障碍或射血障碍均可引起心力衰竭。发达国家成年人群心力衰竭患病率达到1%~2%,而70岁以上的老年人群患病率升高到≥10%。随着人口的老龄化以及冠心病患病率的增加,心力衰竭患病率有上升趋势,并且已经成为人类致残、致死的重要疾病。心衰受到体内各种神经体液因素的调节,中枢神经激素如:肾素-血管紧张素系统(renin-angiotensin system, RAS)、炎性细胞因子(proinflammatory cytokines, PIC)、活性氧簇(reactive oxygen species, ROS)等的改变可能与心衰中枢活动增强密切相关,并可以明显改变外周交感神经的活动。持续的交感神经活动增强是心衰发生发展的重要原因,因此降低交感神经兴奋性成为心衰治疗研究的焦点之一。本文着重论述中枢神经激素对心衰的影响和可能的中枢调控机制。
ABSTRACT: Heart failure is a complex clinical syndrome, and impaired filling or ejection disorders result from any ventricular structure or dysfunction can cause heart failure. The prevalence of heart failure in adult populations in developed countries has reached 1% to 2%, while the prevalence in elderly people over 70 years of age has increased to ≥10%. With the population aging and the prevalence of coronary heart disease increased, the prevalence of heart failure has increased, becoming a disable and fatal disease. The changes of the central nervous system hormones such as renin-angiotensin system (RAS), inflammatory cytokines (proinflammatory cytokines, PIC), and reactive oxygen species (ROS) may be closely related to increased central activity in heart failure, which can significantly alter the activities of peripheral sympathetic nerves. Constant sympathetic nervous activity is an important cause of development of heart failure, so reducing the sympathetic excitability of heart failure is regarded as one of the focuses of treatment and research. This paper focuses on the influence of central neurohormone on heart failure and possible central mechanism
[1] | ZHU GQ, PATEL KP, ZUCKER IH, et al. Microinjection of ang ii into paraventricular nucleus enhances cardiac sympathetic afferent reflex in rats[J]. Am J Physiol Heart Circ Physiol, 2002, 282(6):H2039-2045. |
[2] | KANG YM, ZHANG AQ, ZHAO XF, et al. Paraventricular nucleus corticotrophin releasing hormone contributes to sympathoexcitation via interaction with neurotransmitters in heart failure[J]. Basic Res Cardiol, 2011, 106(3):473-483. |
[3] | MARIAPPAN N, SOORAPPAN RN, HAQUE M, et al. Tnf-alpha-induced mitochondrial oxidative stress and cardiac dysfunction: Restoration by superoxide dismutase mimetic tempol[J]. Am J Physiol Heart Circ Physiol, 2007, 293(5):H2726-2737. |
[4] | MULLER DN, DECHEND R, MERVAALA EM, et al. Nf-kappab inhibition ameliorates angiotensin ii-induced inflammatory damage in rats[J]. Hypertension, 2000, 35(1 Pt2):193-201. |
[5] | BRASIER AR, JAMALUDDIN M, HAN Y, et al. Angiotensin ii induces gene transcription through cell-type-dependent effects on the nuclear factor-kappab (nf-kappab) transcription factor[J]. Mol Cell Biochem, 2000, 212(1-2):155-169. |
[6] | GAO L, WANG W, LI YL, et al. Superoxide mediates sympathoexcitation in heart failure: Roles of angiotensin ii and nad(p)h oxidase[J]. Circ Res, 2004, 95:937-944. |
[7] | GUPTA S, YOUNG D, MAITRA RK, et al. Prevention of cardiac hypertrophy and heart failure by silencing of nf-kappab[J]. J Mol Biol, 2008, 375(3):637-649. |
[8] | KANG YM, GAO F, LI HH, et al. Nf-kappab in the paraventricular nucleus modulates neurotransmitters and contributes to sympathoexcitation in heart failure[J]. Basic Res Cardiol, 2011, 106(6):1087-1097. |
[9] | KANG YM, WANG Y, YANG LM, et al. Tnf-alpha in hypothalamic paraventricular nucleus contributes to sympathoexcitation in heart failure by modulating at1 receptor and neurotransmitters[J]. Tohoku J Exp Med, 2010, 222(4):251-263. |
[10] | ZHANG ZH, YU Y, KANG YM, et al. Aldosterone acts centrally to increase brain renin-angiotensin system activity and oxidative stress in normal rats[J]. Am J Physiol Heart Circ Physiol, 2008, 294(2):H1067-1074. |
[11] | COWLING RT, GURANTZ D, PENG J, et al. Transcription factor nf-kappa b is necessary for up-regulation of type 1 angiotensin ii receptor mrna in rat cardiac fibroblasts treated with tumor necrosis factor-alpha or interleukin-1 beta[J]. J Biol Chem, 2002, 277(8):5719-5724. |
[12] | YU Y, ZHANG ZH, WEI SG, et al. Peroxisome proliferator-activated receptor-gamma regulates inflammation and renin-angiotensin system activity in the hypothalamic paraventricular nucleus and ameliorates peripheral manifestations of heart failure[J]. Hypertension, 2012, 59(2):477-484. |
[13] | SELLERS KW, SUN C, DIEZ-FREIRE C, et al. Novel mechanism of brain soluble epoxide hydrolase-mediated blood pressure regulation in the spontaneously hypertensive rat[J]. FASEB J, 2005, 19(6):626-628. |
[14] | GAO L, WANG W, LI YL, et al. Sympathoexcitation by central ang ii: Roles for at1 receptor upregulation and nad(p)h oxidase in rvlm[J]. Am J Physiol Heart Circ Physiol, 2005, 288(5):H2271-2279. |
[15] | VAHID-ANSARI F, LEENEN FH. Pattern of neuronal activation in rats with chf after myocardial infarction[J]. Am J Physiol, 1998, 275(6 Pt2):H2140-2146. |
[16] | KANG YM, MA Y, ELKS C, et al. Cross-talk between cytokines and renin-angiotensin in hypothalamic paraventricular nucleus in heart failure: Role of nuclear factor-kappab[J]. Cardiovasc Res, 2008, 79(4):671-678. |
[17] | HELWIG BG, MUSCH TI, CRAIG RA, et al. Increased interleukin-6 receptor expression in the paraventricular nucleus of rats with heart failure[J]. Am J Physiol Regul Integr Comp Physiol, 2007, 292(3):R1165-1173. |
[18] | WEI SG, YU Y, WEISS RM, et al. Inhibition of brain mitogen-activated protein kinase signaling reduces central endoplasmic reticulum stress and inflammation and sympathetic nerve activity in heart failure rats[J]. Hypertension, 2016, 67(1):229-236. |
[19] | GUPTA S, SEN S. Role of the nf-kappab signaling cascade and nf-kappab-targeted genes in failing human hearts[J]. J Mol Med (Berl), 2005, 83(12):993-1004. |