|
- 2018
miRNA-21通过TPM1参与高糖诱导的人主动脉平滑肌细胞表型转化与增殖
|
Abstract:
摘要:目的 探讨miRNA-21在高糖诱导的人主动脉平滑肌细胞表型转化与增殖中的作用,以及对靶基因原肌球蛋白1(tropomyosin 1, TPM1)表达的影响。方法? ?体外培养人主动脉平滑肌原代细胞,利用脂质体转染miRNA-21 mimic和inhibitor至细胞中,BrdU法检测高糖刺激miRNA-21过表达和缺失情况下人主动脉平滑肌细胞的增殖情况,荧光定量PCR检测转染前后高糖刺激时细胞miRNA-21和TPM1的表达情况,Western blot检测人主动脉平滑肌细胞中TPM1、骨桥蛋白(osteopontin, OPN)、平滑肌蛋白22α(smooth muscle 22 alpha, SM22α)的表达情况。结果? ?10、20、25mmol/L D-葡萄糖刺激时人主动脉平滑肌细胞较正常对照组(0.613±0.022)显著增殖(0.725±0.026、0.913±0.024、1.513±0.082),差异有统计学意义(P<0.01);10、20、25mmol/L D-葡萄糖刺激时miRNA-21表达较对照组升高1.1、2.0、3.1倍(P<0.01);正常组细胞转染miRNA-21 mimic后细胞增殖能力增强1.6倍,转染miRNA-21 inhibitor后高糖组细胞增殖能力减弱(P<0.01);转染miRNA-21 mimic后TPM1表达减弱,SM22α表达下调,OPN表达增加(P<0.01),转染miRNA-21 inhibitor后TPM1表达上调,SM22α表达上调,OPN表达减少(P<0.01)。结论? ?miRNA-21可下调细胞TPM1的表达,从而促进人主动脉平滑肌细胞表型转化与增殖。
ABSTRACT: Objective? ?To investigate the effect of miRNA-21 on human aortic smooth muscle cells (HASMC) phenotype switching and proliferation induced by high glucose and expression of its target tropomyosin 1 (TPM1). Methods?? miRNA-21 mimic and inhibitor were transfected into HASMC by lipofectamine 2000 in vitro. BrdU method was employed to test the proliferation of HASMC under high glucose and overexpression and absence of miRNA-21; qRT-PCR was used to detect the expressions of miRNA-21 and TPM1 under different conditions. Western blot was used to detect the expressions of TPM1, osteopontin (OPN), and smooth muscle 22 alpha (SM22α). Results?? HASMC significantly proliferated (0.725±0.026, 0.913±0.024, 1.513±0.082) under high glucose (10, 20 and 25mmol/L) compared with control group (0.613±0.022, P<0.01). The expression of miRNA-21 was higher than that in the control group under high glucose (P<0.01). Cell proliferation ability was enhanced 1.6 times in miRNA-21 mimic group than in normal group and decreased in the group of miRNA-21 inhibitor (P<0.01). After transfected with miRNA-21 mimic, the expressions of TPM1 and SM22α reduced and that of OPN increased (P<0.01). After transfection with miRNA-21mimic,TPM1 was upregulated, the expression of SM22α increased while that of OPN decreased (P<0.01). Conclusion?? miRNA-21 promotes the switching and proliferation of HASMC phenotype by down-regulating the expression of TPM1
[1] | LI SL, REDDY MA, CAI Q, et al. Enhanced proatherogenic responses in macrophages and vascular smooth muscle cells derived from diabetic db/db mice[J]. Diabetes, 2006, 55(9):2611-2619. |
[2] | CHENG Y, LIU X, YANG J, et al. MicroRNA-145, a novel smooth muscle cell phenotypic marker and modulator, controls vascular neointimal lesion formation[J]. Circ Res, 2009, 105(2):158-166. |
[3] | CORDES KR, SHEEHY NT, WHITE MP, et al. miR-145 and miR-143 regulate smooth muscle cell fate and plasticity [J]. Nature, 2009, 460(7256):705-710. |
[4] | RENSEN SS, DOEVENDANS PA, VAN EYS GJ. Regulation and characteristics of vascular smooth muscle cell phenotypic diversity[J]. Neth Heart J, 2007, 15(3):100-108. |
[5] | COEN M, BOCHATON-PIALLAT ML. Phenotypic smooth muscle cell heterogeneity: Implications for atherosclerosis[J]. Arterioscl Throm Vas, 2010, (2):327-342. |
[6] | MILICEVIC Z, RAZ I, BEATTIE SD, et al. Natural history of cardiovascular disease in patients with diabetes: Role of hyperglycemia[J]. Diabetes care, 2008, 31(Suppl2):155-160. |
[7] | ALBINSSON S, SUAREZ Y, SKOURA A, et al. MicroRNAs are necessary for vascular smooth muscle growth, differentiation, and function[J]. Arterioscl Throm Vas, 2010, 30(6):1118-1126. |
[8] | JI R, CHENG Y, YUE J, et al. MicroRNA expression signature and antisense-mediated depletion reveal an essential role of MicroRNA in vascular neointimal lesion formation[J]. Circ Res, 2007, 100(11):1579-1588. |
[9] | DAVIS BN, HILYARD AC, LAGNA G, et al. SMAD proteins control DROSHA-mediated microRNA maturation[J]. Nature, 2008, 454(7200):56-61. |
[10] | ENGLAND J, GRANADOS-RIVERON J, POLO-PARADA L, et al. Tropomyosin 1: Multiple roles in the developing heart and in the formation of congenital heart defects[J]. J Mol Cell Cardiol, 2017, 106(2):1-13. |
[11] | GIRJES A, KERIAKOUS D, HAYWARD IP, et al. Cloning of genes differentially regulated during change in vascular smooth muscle phenotype[J]. FEBS Lett, 2001, 509(2):341-342. |
[12] | MENDELL JT. MicroRNAs: critical regulators of development, cellular physiology and malignancy[J]. Cell Cycle, 2005, 4(9):1179-1184. |
[13] | CHAN MC, HILYARD AC, WU C, et al. Molecular basis for antagonism between PDGF and the TGF beta family of signalling pathways by control of miR-24 expression[J]. EMBO J, 2012, 29(3):559-573. |
[14] | LIU X, CHENG Y, ZHANG S, et al. A necessary role of miR-221 and miR-222 in vascular smooth muscle cell proliferation and neointimal hyperplasia[J]. Circ Res, 2012, 104(4):476-487. |
[15] | RAITOHARJU E, LYYTIKAINEN LP, LEVULA M, et al. miR-21, miR-210, miR-34a, and miR-146a/b are up-regulated in human atherosclerotic plaques in the tampere vascular study[J]. Atherosclerosis, 2011, 219(1):211-217. |