全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

miR-126修饰的间质干细胞来源的外泌体对大鼠早期缺血性股骨头坏死的影响
Influence of exosomes derived from mesenchymal stem cells modified by miR-126 on early avascular necrosis of the femoral head in rats

DOI: 10.7652/jdyxb201803018

Keywords: miR-126,间质干细胞,外泌体,类固醇激素,股骨头坏死,血管内皮生长因子A(VEGFA),小梁厚度(Tb.Th),小梁疏密度(Tb.Sp),小梁数(Tb.N),每组织体积骨量(BV/TV)
miR-126
,mesenchymal stem cell,exosome,steroid,necrosis of the femoral head,vascular endothelial growth factor A (VEGFA),Tb.Th,Tb.Sp,Tb.N,BV/TV

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要:目的 观察微小RNA-126(miR-126)修饰的间质干细胞来源的外泌体(MSC-126-Exos)对类固醇激素诱导的早期缺血性股骨头坏死(SANFH)的治疗作用,并探讨其潜在机制。方法 分别以80mg/L MSC-126-Exos和MSC-Exos处理人脐静脉内皮细胞(HUVECs)并设PBS处理组为对照,MTT、划痕实验以及成管实验分别观察各组细胞增殖、迁移和毛细血管网的形成,Western blot检测HUVECs中血管内皮生长因子A(VEGFA)的表达。构建大鼠SANFH模型,分别注射等量MSC-126-Exos、MSC-Exos和PBS,6周后,通过对股骨头区域组织进行CD31免疫荧光染色及其Micro-CT扫描,观察股骨头血管数量及骨质情况。结果 体外实验中,MSC-126-Exos组的HUVECs的增殖、迁移和成管较MSC-Exos组显著增强,且VEGFA的表达水平也上调,差异有统计学意义(P<0.05)。在体实验中,MSC-126-Exos组大鼠股骨头坏死区CD31免疫荧光标记的血管数量较MSC-Exos组和模型组显著增多(P<0.05),且股骨头坏死区Micro-CT扫描显示MSC-126-Exos组的小梁厚度(Tb.Th)、小梁数(Tb.N)和每组织体积骨量(BV/TV)值也显著高于MSC-Exos组和模型组,而小梁分离度(Tb.Sp)显著降低(P<0.05)。结论 MSC-126-Exos可以促进内皮细胞功能,改善股骨头区的血运从而增强骨质沉积,对大鼠SANFH具有显著的治疗效果。
ABSTRACT: Objective To investigate the effects of exosomes derived from mesenchymal stem cells modified by miR-126 (MSC-126-Exos) on early steroid-induced avascular necrosis of the femoral head (SANFH) so as to explore its underlying mechanism. Methods The well-growing HUVECs were treated with 80mg/L of MSC-126-Exos, MSC-Exos and equal amount of PBS, respectively. The proliferation, migration and capillary network formation of HUVECs were detected by MTT, scratch test and tube formation assay, respectively. Western blot was used to detect the expression of vascular endothelial growth factor A (VEGFA) in HUVECs. Early steroid-induced avascular necrosis of femoral head (SANFH) models of Sprague Dawley (SD) rats were injected with MSC-126-Exos, MSC-Exos and PBS, respectively. After 6 weeks, CD31 immunofluorescence staining and Micro-CT scanning were performed on the region of the femoral head to evaluate the therapeutic effects of MSC-126-Exos. Results In vitro, MSC-126-Exos group significantly promoted the proliferation, migration and tube formation of HUVECs, and the expression level of VEGFA was also significantly higher than that in MSC-Exos group (P<0.05). In vivo, the number of CD31 immunofluorescence labeled vessels in the femoral head in MSC-126-Exos group was significantly larger than that in MSC-Exos group and model group (P<0.05). Besides, the Micro-CT scanning of the femoral head necrosis region showed that the trabecular thickness (Tb.Th), trabecular separation (Tb.Sp), trabecular number (Tb.N) and bone volume per tissue volume (BV/TV) value in MSC-126-Exos group were significantly higher than those in MSC-Exos group and model group (P<0.05). Conclusion MSC-126-Exos can promote the function of endothelial cells, improve blood supply in the femoral head area and enhance the deposition of bone, thus having significant therapeutic effects on SANFH in rats

References

[1]  JONES JP. Fat embolism, intravascular coagulation, and osteonecrosis[J]. Clin Orthop Relat Res, 1993, 292(292):294-308.
[2]  CHIU KH, SHEN WY, KO CK, et al. Osteonecrosis of the femoral head treated with cementless total hip arthroplasty. A comparison with other diagnoses[J]. J Arthroplasty, 1997, 12(6):683-688.
[3]  AMARIGLIO N, HIRSHBERG A, SCHEITHAUER BW, et al. Donor-derived brain tumor following neural stem cell transplantation in an ataxia telangiectasia patient[J]. PLoS Med, 2009, 6(2):e1000029.
[4]  HERBERTS CA, KWA MS, HERMSEN HP. Risk factors in the development of stem cell therapy[J]. J Transl Med, 2011, 9:29.
[5]  MITCHELL A, FUJISAWA T, NEWBY D, et al. Vascular injury and repair: A potential target for cell therapies[J]. Future Cardiol, 2015, 11(1):45-60.
[6]  辛毅,刘小希,赵伟,等. 差速贴壁法分离兔骨髓源性间充质干细胞和内皮祖细胞及其生物学特性的研究[J]. 中国实验血液学杂志, 2013, 21(3):746-753.
[7]  TH?IRY C, AMIGORENA S, RAPOSO G, et al. Isolation and characterization of exosomes from cell culture supernatants and biological fluids[J]. Curr Protoc Cell Biol, 2006, 3:22.
[8]  CHENG HS, SIVACHANDRAN N, LAU A, et al. MicroRNA-146 represses endothelial activation by inhibiting pro-inflammatory pathways[J]. EMBO Mol Med, 2013, 5(7):949-966.
[9]  BIAN S, ZHANG L, DUAN L, et al. Extracellular vesicles derived from human bone marrow mesenchymal stem cells promote angiogenesis in a rat myocardial infarction model[J]. J Mol Med (Berl), 2014, 92(4):387-397.
[10]  XIN H, LI Y, CUI Y, et al. Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats[J]. J Cereb Blood Flow Metab, 2013, 33(11):1711-1715.
[11]  ZHANG J, GUAN J, NIU X, et al. Exosomes released from human induced pluripotent stem cells-derived MSCs facilitate cutaneous wound healing by promoting collagen synthesis and angoigenesis[J]. J Transl Med, 2015,13:49.
[12]  TENG X, CHEN L, CHEN W, et al. Mesenchymal stem cell-derived exosomes improve the microenvironment of infarcted myocardium contributing to angiogenesis and anti-inflammation[J]. Cell Physiol Biochem, 2015, 37(6):2415-2424.
[13]  AI-AQL ZS, ALAGL AS, GRAVES DT, et al. Molecular mechanisms controlling bone formation during fracture healing and distraction osteogenesis[J]. J Dent Res, 2008, 87(2):107-118.
[14]  CHOI IH, AHN JH, CHUNG CY, et al. Vascular proliferation and blood supply during distraction osteogenesis: A scanning electron microscopic observation[J]. J Orthop Res, 2000, 18(5):698-705.
[15]  ATSUMI T, KUROKI Y. Role of impairment of blood supply of the femoral head in the pathogenesis of idiopathic osteonecrosis[J]. Clin Orthop Relat Res, 1992, 277(277):22-30.
[16]  BONAUER A, BOON RA. DIMMELER S. Vascular microRNAs[J]. Current Drug Targets, 2010, 11(8):943-949.
[17]  LATRONICO MV, CATALUCCI D, CONDORELLI G. Emerging role of microRNAs in cardiovascular biology[J]. Circ Res, 2007, 101(12):1225-1236.
[18]  GERSTENFELD LC, CULLINANE DM, BARNES GL, et al. Fracture healing as a post-natal developmental process: molecular, spatial, and temporal aspects of its regulation[J]. J Cell Biochem, 2003, 88(5):873-884.
[19]  GUO SC, TAO SC, YIN WJ, et al. Exosomes from human synovial-derived mesenchymal stem cells prevent glucocorticoid-induced osteonecrosis of the femoral head in the rat[J]. Int J Biol Sci, 2016, 12(10):1262-1272.
[20]  XIN H, LI Y, CHOPP M. Exosomes/miRNAs as mediating cell-based therapy of stroke[J]. Front Cell Neurosci, 2014, 8:377.
[21]  CORDES KR, SRIVASTAVA D. MicroRNA regulation of cardiovascular development[J]. Circ Res, 2009, 104(6):724-732.
[22]  NICOLI S, STANDLEY C, WALKER P, et al. MicroRNA-mediated integration of haemodynamics and Vegf signalling during angiogenesis[J]. Nature, 2010, 464(7292):1196-1200.
[23]  ZHANG C, MA J, LI M, et al. Repair effect of coexpression of the hVEGF and hBMP genes via an adeno-associated virus vector in a rabbit model of early steroid-induced avascular necrosis of the femoral head[J]. Transl Res, 2015, 166(3):269-280.
[24]  SUN Y, FENG Y, ZHANG C, et al. Beneficial effect of autologous transplantation of endothelial progenitor cells on steroid-induced femoral head osteonecrosis in rabbits[J]. Cell transplantation, 2011, 20:233-243.
[25]  石少辉,李子荣. 血管生成在缺血性股骨头坏死修复中的作用[J]. 中华全科医学杂志, 2007, 6(8):479-481.
[26]  KLEINHEINZ J, STRATMANN U, JOOS U, et al. VEGF-activated angiogenesis during bone regeneration[J]. J Oral Maxillofac Surg, 2005, 63:1310-1316.
[27]  SUAREZ Y, SESSA WC. MicroRNAs as novel regulation of angiogenesis[J]. Circ Res, 2009, 104(6):442-454.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133