|
- 2018
PPAR-γ通过活化PTEN抑制肾间质成纤维细胞MMP2的活化
|
Abstract:
摘要:目的 探讨激活的PPAR-γ是否通过活化PTEN抑制血小板源性生长因子(PDGF)刺激的肾间质成纤维细胞MMP2活化,从而介导肾间质纤维化的发生。方法 以原代分离培养的小鼠肾间质成纤维细胞为研究对象,以肾间质纤维化的主要刺激因子PDGF-AA刺激细胞。于PDGF-AA刺激细胞前,分别予以罗格列酮激活PPAR-γ,PI3K、PTEN、PPAR-γ特异性抑制剂LY294002、bpV(Pic)、GW9662预处理细胞,检测AKT、PTEN、PPAR-γ、MMP2的活化水平。结果 成功分离并培养小鼠肾间质成纤维细胞,并证实PDGF-AA可剂量依赖性激活MMP2,而对MMP9、TIMPs无影响。特异性抑制PI3K/AKT信号通路或激活PPAR-γ显著抑制PDGF-AA刺激的AKT、MMP2活性;抑制PTEN可逆转PPAR-γ激活对PDGF-AA诱导的AKT磷酸化及MMP2活性的影响。结论 PI3K/AKT信号通路特异性介导PDGF-AA诱导的肾间质成纤维细胞MMP2的活化;激活的PPAR-γ通过活化PTEN抑制PI3K/AKT信号通路进而抑制MMP2活化。
ABSTRACT: Objective To investigate the hypothesis that activation of PPAR-γ regulates renal remodeling by modulating matrix metalloproteinase 2 (MMP2) activation in primary cultured renal interstitial fibroblasts. Methods In our present study, platelet-derived growth factor-AA (PDGF-AA), a key stimulator of RIF, was applied to stimulate primary cultured mouse renal interstitial fibroblasts. The selective inhibitor of PI3K or PTEN was used to investigate the involvement of the above molecular mediators in PDGF-induced MMP2 production. Results PDGF-AA dose-dependently induced MMP2 activation in primary cultured mouse renal interstitial fibroblasts. This effect was blocked by inhibition of PI3K/AKT signal pathway. PDGF-AA did not significantly affect the generation of tissue inhibitors of matrix metalloproteinases (TIMPs). Pre-incubation of cells with rosiglitazone blocked PDGF-stimulated MMP2 activation, and this effect was particularly coupled to PPAR-γ activation of PTEN and inhibition of AKT phosphorylation. Inhibition of PTEN by bpV(Pic) restored the suppression of PPAR-γ on phosphorylation of AKT and subsequent MMP2 production. Conclusion Our results indicate that activation of PI3K/AKT signaling mediated PDGF-induced MMP2 activation. PPAR-γ inhibited MMP2 secretion by activating PTEN and subsequent suppression of AKT phosphorylation
[1] | FLOEGE J, EITNER F, ALPERS CE. A new look at platelet-derived growth factor in renal disease[J]. J Am Soc Nephrol, 2008, 19(1):12-23. |
[2] | FREDRIKSSON L, LI H, FIEBER C, et al. Tissue plasminogen activator is a potent activator of PDGF-CC[J]. EMBO J, 2004, 23(19):3793-3802. |
[3] | WANG L, ZHAO Y, GUI B, et al. Acute stimulation of glucagon secretion by linoleic acid results from GPR40 activation and [Ca????2+??]i increase in pancreatic islet {alpha}-cells[J]. J Endocrinol, 2011, 210(2):173-179. |
[4] | CONSOLO M, AMOROSO A, SPANDIDOS DA, et al. Matrix metalloproteinases and their inhibitors as markers of inflammation and fibrosis in chronic liver disease (Review)[J]. Int J Mol Med, 2009, 24(4):143-152. |
[5] | CHENG S, LOVETT DH. Gelatinase A(MMP-2) is necessary and sufficient for renal tubular cell epithelial-mesenchymal transformation[J]. Am J Pathol, 2003, 162(6):1937-1949. |
[6] | BOLEN S, FELDMAN L, VASSY J, et al. Systematic review: Comparative effectiveness and safety of oral medications for type 2 diabetes mellitus[J]. Ann.Intern Med, 147(2):386-399. |
[7] | EDDY AA. Molecular basis of renal fibrosis[J]. Pediatr Nephrol, 2000, 15(3):290-301. |
[8] | CHUANG PY, MENON MC, HE JC. Molecular targets for treatment of kidney fibrosis[J]. J Mol Med (Berl), 2013, 91(5):549-559. |
[9] | TAN RJ, LIU Y. Matrix metalloproteinases in kidney homeostasis and diseases[J]. Am J Physiol Renal Physiol, 2012, 302(5):1351-1361. |
[10] | YESSOUFOU A, WAHLI W. Multifaceted roles of peroxisome proliferator-activated receptors (PPARs) at the cellular and whole organism levels[J]. Swiss Med Wkly, 2010, 140(5):13071-13074. |
[11] | KAWAI T, MASAKI T, DOI S, et al. PPAR-γ agonist attenuates renal interstitial fibrosis and inflammation through reduction of TGF-β[J]. Lab Invest, 2009, 89(1):47-58. |
[12] | DU X, SHIMIZU A, MASUDA Y, et al. Involvement of matrix metalloproteinase-2 in the development of renal interstitial fibrosis in mouse obstructive nephropathy[J]. Lab Invest, 2012, 92(3):1149-1160. |
[13] | DUYMELINCK C, DENG JT, DAUWE SE, et al. Inhibition of the matrix metalloproteinase system in a rat model of chronic cyclosporine nephropathy[J]. Kidney Int, 1998, 54(5):804-818. |
[14] | CAI G, ZHANG X, HONG Q, et al. Tissue inhibitor of metalloproteinase-1 exacerbated renal interstitial fibrosis through enhancing inflammation[J]. Nephrol Dial Transpl, 2008, 23(9):1861-1875. |
[15] | KULKARNI AA, THATCHER TH, OLSEN KC, et al. PPAR-γ ligands repress TGFβ-induced myofibroblast differentiation by targeting the PI3K/Akt pathway: Implications for therapy of fibrosis[J]. PLoS One, 2011, 6(5):15909-15912. |
[16] | ZHAO H, DONG Y, TIAN X, et al. Matrix metalloproteinases contribute to kidney fibrosis in chronic kidney diseases[J]. World J Nephrol, 2013, 2(8):84-89. |
[17] | ROEYEN CR, OSTENDORF T, FLOEGE J. The platelet-derived growth factor system in renal disease: An emerging role of endogenous inhibitors[J]. Eur J Cell Biol, 2012, 91(3):542-551. |
[18] | ZVIBEL I, BAR-ZOHAR D, KLOOG Y, et al. The effect of Ras inhibition on the proliferation, apoptosis and matrix metalloproteases activity in rat hepatic stellate cells[J]. Dig Dis Sci, 2008, 53(7):1048-1053. |
[19] | BOOR P, OSTENDORF T, FLOEGE J. Renal fibrosis: Novel insights into mechanisms and therapeutic targets[J]. Nat Rev Nephrol, 2010, 6(11):643-656. |
[20] | WANG X, ZHOU Y, TAN R, et al. Mice lacking the matrix metalloproteinase-9 gene reduce renal interstitial fibrosis in obstructive nephropathy[J]. Am J Physiol Renal Physiol, 2010, 299(7):973-982. |
[21] | CHEN YT, CHANG FC, WU CF, et al. Platelet-derived growth factor receptor signaling activates pericyte-myofibroblast transition in obstructive and post-ischemic kidney fibrosis[J]. Kidney Int, 2011, 80(11):1170-1181. |
[22] | BOOR P, FLOEGE J. Chronic kidney disease growth factors in renal fibrosis[J]. Clin Exper Pharmacol Physiol, 2011, 38(7):441-450. |