|
- 2016
Sorafenib通过抑制TGF-β/Smad途径延缓肾纤维化的研究
|
Abstract:
摘要:目的 探讨sorafenib减轻肾纤维化的作用及机制。方法 用低、中、高剂量sorafenib分别给单侧输尿管梗阻(UUO)模型大鼠灌胃或干预经TGF-β1刺激的NRK-52E细胞。HE染色观察各组肾组织纤维化情况,免疫荧光染色检测肾组织及NRK-52E细胞α-SMA、E-cadherin的表达情况。用流式细胞术测定各组NRK-52E细胞周期。Western blot检测各组NRK-52E细胞中Smad3和p-Smad3的表达变化。结果 HE染色结果显示,与UUO模型组相比,sorafenib治疗组肾间质纤维化明显减轻,小管萎缩、炎细胞浸润较轻(P<0.05);与对照组比较,sorafenib治疗组E-cadherin在NRK-52E细胞和肾组织中表达均增加,而α-SMA表达均降低(P<0.05);流式细胞术分析发现细胞周期停滞于G0/G1期的细胞数明显增加,而进入G2、S期的细胞数明显减少(P<0.05);与对照组比较,sorafenib干预组p-Smad3蛋白在NRK-52E细胞中表达降低,且与sorafenib剂量呈正相关(P<0.05)。结论 sorafenib具有抗肾脏纤维化作用,主要通过TGF-β/Smad途径发挥作用,可能为治疗肾纤维化提供一种早期干预的新手段。
ABSTRACT: Objective To investigate the effect of sorafenib in ameliorating renal fibrosis and its possible mechanisms. Methods Rats were subjected to unilateral ureteral obstruction (UUO) and intragastrically administered sorafenib. NRK-52E cells were treated with transforming growth factor-β1 (TGF-β1) and sorafenib. HE staining was used to visualize renal fibrosis. α-SMA and E-cadherin expressions in kidney tissue and NRK-52E cells were performed using immunofluorescence. The cell cycle of NRK-52E cells was determined by flow cytometry analysis. Smad3 and p-Smad3 protein expressions in NRK-52E cells were detected by Western blot analysis. Results HE staining showed that kidney interstitial fibrosis, tubular atrophy, and inflammatory cell infiltration in the sorafenib-treated UUO groups were significantly decreased compared with the vehicle-treated UUO group (P<0.05). Compared with those in UUO and TGF-β-stimulated NRK-52E groups, the expression of a-SMA decreased but E-cadherin expression increased in the UUO kidneys and NRK-52E cells of the sorafenib-treated groups (P<0.05). After 24h stimulation with TGF-β1 5ng/mL, the number of cell cycles arrested in G0/G1 phase was significantly increased and the number of cells that entered G2,S phase decreased (P<0.05). Compared with that in TGF-β-stimulated NRK-52E groups, p-Smad3 decreased in the sorafenib-treated groups (P<0.05). Conclusion Our results suggest that sorafenib may be useful for the treatment of renal fibrosis through suppressing TGF-β/Smad3 signaling
[1] | ZHANG L, WANG F, WANG L, et al. Prevalence of chronic kidney disease in China: a cross-sectional survey[J]. Lancet, 2012, 379(9818):815-822. |
[2] | SONOMURA K, OKIGAKI M, KIMURA T, et al. The kinase Pyk2 is involved in renal fibrosis by means of mechanical stretch-induced growth factor expression in renal tubules[J]. Kid Int, 2012, 81(5):449-457. |
[3] | THABUT D, ROUTRAY C, LOMBERK G, et al. Complementary vascular and matrix regulatory pathways underlie the beneficial mechanism of action of sorafenib in liver fibrosis[J]. Hepatology, 2011, 54(2):573-585. |
[4] | JIN Y, RATNAM K, CHUANG PY, et al . Systems approach identifies HIPK2 as a critical regulator of kidney fibrosis[J]. Nat Med, 2012, 18(4):580-588. |
[5] | BAE E, KIM SJ, HONG S, et al. Smad3 linker phosphorylation attenuates Smad3 transcriptional activity and TGF-beta1/Smad3-induced epithelial-mesenchymal transition in renal epithelial cells[J]. Biochem Bioph Res Co, 2012, 427(3):593-599. |
[6] | MENG XM, HUANG XR, CHUNG AC, et al. Smad2 protects against TGF-beta/Smad3-mediated renal fibrosis[J]. J Am Soc Nephrol, 2010, 21(9):1477-1487. |
[7] | MORNAGA J, KAKIZOE Y, MIYOSHI T, et al. The antifibrotic effect of a serine protease inhibitor in the kidney[J]. Am J Physiol, 2013, 305(2):F173-181. |
[8] | CORESH J, SELVIN E, STEVENS LA, et al. Prevalence of chronic kidney disease in the United States[J]. JAMA, 2007, 298(17):2038-2047. |
[9] | PIERA-VELAZQUEZ S, JIMENEZ SA. Molecular mechanisms of endothelial to mesenchymal cell transition (EndoMT) in experimentally induced fibrotic diseases[J]. Fibrogenesis & Tissue Repair, 2012, 5(1):1-5. |
[10] | WIHELM S, CARTER C, LYNCH M, et al. Discovery and development of sorafenib: a multikinase inhibitor for treating cancer[J]. Nat Rev Drug Discov, 2006, 5:835-844. |
[11] | CHEN YL, LV J, YE XL, et al. Sorafenib inhibits transforming growth factor beta1-mediated epithelial-mesenchymal transition and apoptosis in mouse hepatocytes[J]. Hepatology, 2011, 53(5):1708-1718. |
[12] | ZHANG J, CHEN YL, JI G, et al. Sorafenib inhibits epithelial-mesenchymal transition through an epigenetic-based mechanism in human lung epithelial cells[J]. PloS One, 2013, 8(5):e64954 |
[13] | WANG Y, GAO J, ZHANG D, et al. New insights into the antifibrotic effects of sorafenib on hepatic stellate cells and liver fibrosis[J]. J Hepatol, 2010, 53(1):132-144. |
[14] | LLOVET JM, RICCI S, MAZZAFERRO V, et al. Sorafenib in advanced hepatocellular carcinoma[J]. N Engl J Med, 2008, 359:378-390. |
[15] | BOFFA JJ, DUSSAULE JC, RONCO P, et al. Chronic kidney disease, new therapeutic approaches[J]. La Revue du Praticien, 2012, 62(1):72-75. |