全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

一种针对超声检测图像的自适应阈值设置方法
An Adaptive Threshold Setting Method for Image Processing in Ultrasonic Testing

DOI: 10.7652/xjtuxb201501021

Keywords: 超声检测图像,自适应阈值设置方法,最大类间方差,最小交叉熵
ultrasonic testing image
,adaptive threshold setting method,maximum between?? cluster variance algorithm,minimum cross??entropy algorithm

Full-Text   Cite this paper   Add to My Lib

Abstract:

在对图像阈值分割进行分析和已有算法的基础上,提出了一种针对超声波无损检测C扫描图像的自适应阈值设置方法,以实现对超声波C扫描图像的准确定量评估。该方法根据C扫描图像的灰度分布自动地计算相应的阈值,并进一步对特征区域进行分离和评估,从而克服固定阈值方法受超声波能量偏差影响大、难以准确评估的缺点。将该方法获得的结果与最大类间方差、最小交叉熵等方法的处理结果以及通过腐蚀试验获取的实际检测界面结果进行了对比,结果表明:该自适应阈值设置方法与其他分割方法相比,评估的结果更加准确,运算时间更短,并且结果受超声波能量偏差的影响最小。
Based on the analysis of the image threshold segmenting method and the existing algorithms, an adaptive threshold setting method (ATSM) is presented to make accurate quantitative assessment on the ultrasonic C??scan images. In this method, the threshold is calculated automatically according to the gray level distribution of the C??scan image and then the feature region is segmented and evaluated by the threshold. Therefore, ATSM can overcome the shortcoming that constant threshold evaluation method (CTEM) is greatly influenced by the deviation of ultrasonic energy, which leads to inaccurate results. According to the results obtained by corrosion test, ATSM is more accurate and stable, and spends less operation time than other algorithms, such as the maximum between??cluster variance algorithm and the minimum cross??entropy algorithm

References

[1]  [1]沈振, 高苏南, 冯晓雷, 等. 超声波无损检测应用于塑料管道壁厚测试 [J]. 塑料科技, 2010, 38(11): 77??79.
[2]  [2]RONALD J B, YASUNOBU H. Digital ultrasonic nondestructive testing in the United States [J]. Journal of JSNDI, 1996, 45(9): 649??656.
[3]  [3]吕江明. 超声缺陷信号自动提取与评价技术研究 [D]. 杭州: 中国计量学院, 2013.
[4]  [4]迟军, 周晓军, 宋立军, 等. 数字图像处理技术在锻件缺陷检测中的应用 [J]. 机床与液压, 2005, 33(11): 139??140.
[5]  CHI Jun, ZHOU Xiaojun, SONG Lijun, et al. The application of digital image processing techniques in the testing of forge piece defect [J]. Machine Tool and Hydraulics, 2005, 33(11): 139??140.
[6]  [5]王裕文, 刘大文, 侯成刚, 等. JTUIS系列超声成像无损检测系统 [J]. 低压电器, 2000, 42(2): 53??55.
[7]  [6]金碧瑞. 结合界面质量的超声定量无损检测研究 [D]. 西安: 西安交通大学, 2013: 15??18.
[8]  [7]SUN Fengjie, WANG He, FAN Jieqing. 2D Otsu segmentation algorithm based on simulated annealing genetic algorithm for iced??cable images [M]∥Information Technology and Applications: Vol 2. Washington DC, USA: IEEE Computer Society, 2009: 600??602.
[9]  [8]AL??ATTAS R. Thresholding of medical images using minimum cross entropy [J]. IFMBE Proceedings, 2006, 15: 296??299.
[10]  WANG Yuwen, LIU Dawen, HOU Chenggang, et al. Research on the JTUIS series ultrasonic NDT imaging systems [J]. Low Voltage Apparatus, 2000, 42(2): 53??55.
[11]  [9]GUNARATHNE G P P. Development of a synthetic A??scan technique for ultrasonic testing of pipelines [J]. IEEE Transactions on Instrumentation and Measurement, 2002, 1: 547??552.
[12]  SHEN Zhen, GAO Sunan, FENG Xiaolei, et al. Application of ultrasonic nondestructive testing in plastic pipe wall thickness [J]. Plastic Science and Technology, 2010, 38(11): 77??79.
[13]  [10]RUZEK R, LOHONKA R. Ultrasonic C??scan and shearography NDI techniques evaluation of impact defects identification [J]. Nondestructive Testing and Evaluation International, 2006, 39(2): 132??142.
[14]  [11]章毓晋. 图像工程: 中册 [M]. 北京: 清华大学出版社, 2005: 121??122.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133