|
- 2015
双曲正弦非线性跟踪微分器设计
|
Abstract:
针对传统跟踪微分器算法复杂、参数整定困难和噪声抑制能力有限的不足,设计了一种新型双曲正弦非线性跟踪微分器(HNTD)。引入终端吸引子函数和双曲正弦函数构造了HNTD的跟踪函数,并证明了其全局一致渐近稳定性。通过仿真分析设计参数变化对HNTD频域特性的影响,为其设计参数的整定提供参考。双曲正弦函数既能保证HNTD状态收敛的快速性,又能有效避免平衡点附近的颤振现象;终端吸引子函数则保证了HNTD对噪声良好的抑制效果。仿真结果表明,HNTD的跟踪和滤波效果与传统跟踪微分器相比,不仅结构形式简单、设计参数相对较少、整定规则明确,而且在跟踪精度、响应速度和滤波能力等方面均具有一定的优势。
A new hyperbolic??sine??based nonlinear tracking differentiator (HNTD) is presented to improve the performance of traditional tracking differentiators that are complicated, difficult to regulate parameters, and hard to restrain noises. The tracking function of HNTD is constructed by introducing a terminal attractor function and a hyperbolic sine function, and its global uniform asymptotical stability is proved. Then, the parameter regulating principle is obtained by analyzing the effects of parameters changes on frequency domain characteristics. The use of the hyperbolic sine function ensures the convergence speed of HNTD’s states and eliminates chattering near the trimmed point. An excellent noise constraint performance is achieved by using the terminal attractor function. Simulation results show that the parameters of HNTD are easy to regulate, and the performance of HNTD is better than that of the traditional tracking differentiators in tracking speed and filtering
[1] | [11]葛连正, 陈健, 李瑞峰. 改进的跟踪微分器设计 [J]. 吉林大学学报: 工学版, 2011, 41(5): 1439??1443. |
[2] | [1]LEVANT A. High??order sliding modes, differentiation and output??feedback control [J]. International Journal of Control, 2003, 76(9/10): 924??941. |
[3] | [2]LEVANT A. Principles of 2??sliding mode design [J]. Automatica, 2007, 43(4): 576??586. |
[4] | [3]LEVANT A. Finite differences in homogeneous discontinuous control [J]. IEEE Transactions on Automatic Control, 2007, 52(7): 1208??1217. |
[5] | [4]蒲明, 吴庆宪, 姜长生, 等. 高阶滑模微分器的分析与改进 [J]. 控制与决策, 2011, 26(8): 1136??1140. |
[6] | [6]韩京清, 王伟. 非线性跟踪?参⒎制? [J]. 系统科学与数学, 1994, 14(2): 177??183. |
[7] | [8]FENG H, LI S J. A tracking differentiator based on Taylor expansion [J]. Applied Mathematics Letters, 2013, 26(7): 735??740. |
[8] | WANG Xinhua, CHEN Zengqiang, YUAN Zhuzhi. Nonlinear tracking??differentiator with high speed in whole course [J]. Control Theory & Applications, 2003, 20(6): 875??878. |
[9] | [10]赵鹏, 姚敏立, 陆长捷, 等. 高稳快速非线性?蚕咝愿?踪微分器 [J]. 西安交通大学学报, 2011, 45(8): 43??48. |
[10] | [15]王新华, 刘金琨. 微分器设计与应用?残藕怕瞬ㄓ肭蟮? [M]. 北京: 电子工业出版社, 2010: 53??106. OU Chaozhen. Design of improved nonlinear tracking differentiator [J]. Control and Decision, 2008, 23(6): 647??650. |
[11] | PU Ming, WU Qingxian, JIANG Changsheng, et al. Analysis and improvement of higher??order sliding mode differentiator [J]. Control and Decision, 2011, 26(8): 1136??1140. |
[12] | [5]蒲明, 吴庆宪, 姜长生, 等. 快速高阶滑模微分器 [J]. 控制与决策, 2012, 27(9): 1415??1420. |
[13] | HAN Jingqing, WANG Wei. Nonlinear tracking??differentiator [J]. Journal of Systems Science and Mathematical Sciences, 1994, 14(2): 177??183. |
[14] | [7]QI Gaoyuan, CHEN Zengqiang, YUAN Zhuzhi. New tracking??differentiator design and analysis of its stability and convergence [J]. Journal of Systems Engineering and Electronics, 2004, 15(4): 780??787. |
[15] | [9]王新华, 陈增强, 袁著祉. 全程快速非线性跟踪?参⒎制? [J]. 控制理论与应用, 2003, 20(6): 875??878. |
[16] | ZHAO Peng, YAO Minli, LU Changjie, et al. Design of nonlinear??linear tracking differentiator with high stability and high speed [J]. Journal of Xi’an Jiaotong University, 2011, 45(8): 43??48. |
[17] | GE Lianzheng, CHEN Jian, LI Ruifeng. Design of an improved tracking differentiator [J]. Journal of Jilin University: Engineering and Technology Edition, 2011, 41(5): 1439??1443. |
[18] | [12]史永丽, 侯朝桢. 改进的非线性跟踪微分器设计 [J]. 控制与决策, 2008, 23(6): 647??650. |
[19] | SHI Yongli, H[13]董小萌, 张平. 反正切形式跟踪微分器设计及相平面分析 [J]. 控制理论与应用, 2010, 27(4): 533??537. |
[20] | DONG Xiaomeng, ZHANG Ping. Design and phase plane analysis of an arctangent??based tracking differentiator [J]. Control Theory & Applications, 2010, 27(4): 533??537. |
[21] | [14]陆启韶. 常微分方程的定性方法和分叉 [M]. 北京: 北京航空航天大学出版社, 2002: 182??230. |
[22] | PU Ming, WU Qingxian, JIANG Changsheng, et al. Fast higher??order sliding mode differentiator [J]. Control and Decision, 2012, 27(9): 1415??1420. |