全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

用于柔性转子主动控制的等几何Timoshenko 梁模型及其数值验证
Isogeometric Timoshenko Beam Model and Numerical Verification for Active Vibration Control of Flexible Rotor

DOI: 10.7652/xjtuxb201610021

Keywords: 等几何方法,柔性转子模型,Timoshenko梁,振动控制,磁悬浮轴承
isogeometric method
,flexible rotor model,Timoshenko beam,vibration control,magnetic bearing

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了克服采用标准有限元方法建立的转子模型自由度多不便直接用于控制器设计的问题,结合等几何分析方法的精度高、自由度少的特点,提出了把低阶等几何Timoshenko梁模型运用到柔性转子的主动控制中,并进行了数值验证。首先,给出了半离散等几何模型及在主动控制中作为转子控制输入信号的各类边界条件;其次,分别对比了高、低阶等几何模型的奇异值响应以及简支条件下的高、低阶模型的数值解与理论解;最后,在采用磁悬浮轴承支撑和给定分布不平衡力扰动的条件下,对转子进行了分散比例微分(PD)仿真控制。结果表明:所采用的低阶模型的奇异值响应在前6阶临界转速范围内与高阶模型基本一致;高阶模型的前10阶模态频率很好地吻合了理论解,低阶模型前4阶模态频率误差在0.2%以内;高、低阶等几何梁模型下的转子不平衡振动位移稳态响应的差别很小,该误差可看成工作转速下的同频小扰动。低阶等几何梁模型在低频范围的高精度验证了该方法所得低阶模型直接用于控制器设计的可行性。
A Timoshenko beam model with fewer degrees of freedom (DOFs) by isogeometric analysis method is proposed to be applied to active control of the flexible rotor and is numerically verified. This strategy solves the difficulties in the model from the standard FEM analysis, which cannot be directly employed for controller design due to the more DOFs. The isogeometric beam model with the semi??discrete form and the various boundaries are considered as the input signals in the active control for the rotor, then the singular value responses of the isogeometric beam models with more and fewer DOFs are compared, and the numerical solutions of isogeometric beam models with more and fewer DOFs and theoretic solutions both with simple supports are also compared. The rotor supported by the magnetic bearing and under the disturbances by the given distributing unbalance forces is simulated by the decentralized PD method. The results show that the singular responses of the model with fewer DOFs almost agree with those with more DOFs within the range of the sixth critical speed; the numerical solutions with more DOFs agree well the theoretic solutions within the first ten modal frequencies and the relative error of the first four modal frequencies from the model with fewer DOFs is less than 0.2%; the deviation of the steady displacement responses from the unbalance vibration between the isogeometric models with more and fewer DOFs is small and their steady response deviation can be regarded as the small disturbances with the same frequency at the working speed. The feasibility of applying directly for controller design is verified by the higher accuracy of the fewer DOFs isogeometric beam model within the low frequency range

References

[1]  YIN Shuohui, YU Tiantang, LIU Peng. Free vibration analysis of functionally graded plates using isogeometric finite element method [J]. Journal of Vibration and Shock, 2013, 32(24): 180??186.
[2]  [13]BEIRAO V L, LOVADINA C, REALI A. Avoiding shear locking for the Timoshenko beam problem via isogeometric collocation methods [J]. Computer Methods in Applied Mechanics and Engineering, 2012, 241: 38??51.
[3]  [14]LEE S J, PARK K S. Vibrations of Timoshenko beams with isogeometric approach [J]. Applied Mathematical Modelling, 2013, 37(22): 9174??9190.
[4]  [15]刘伟. 结构振动超收敛等几何分析方法 [D]. 福建厦门: 厦门大学, 2014: 63??75.
[5]  [16]GENTA G. Dynamics of rotating systems [M]. Berlin, Germany: Springer Science & Business Media, 2007: 213??217.
[6]  [17]PIEGL L, TILLER W. The NURBS book [M]. Berlin, Germany: Springer??Verlag, 1997: 47??49.
[7]  [18]RAO S S. 机械振动 [M]. 4版. 李欣业, 张明录, 译. 北京: 清华大学出版社, 2009: 357??358.
[8]  [1]孟光. 转子动力学研究的回顾与展望 [J]. 振动工程学报, 2002, 15(1): 1??2.
[9]  [2]SCHWEITZER G, BLEULER H, MASLEN E H, et al. Magnetic bearings: theory, design, and application to rotating machinery [M]. Berlin, Germany: Springer, 2009: 1??11.
[10]  [3]曹建荣, 虞烈, 谢友柏. 主动磁悬浮轴承的解耦控制 [J]. 西安交通大学学报, 1999, 33(12): 44??48.
[11]  CAO Jianrong, YU Lie, XIE Youbai. Decoupling control for active magnetic bearing [J]. Journal of Xi’an Jiaotong University, 1999, 33(12): 44??48.
[12]  [4]俞文伯, 栾胜, 房建成. CMG磁悬浮转子系统的模型与控制规律 [J]. 航空学报, 2003, 24(6): 541??545.
[13]  YU Wenbo, LUAN Sheng, FANG Jiancheng. Model and control strategy of CMG magnetic bearing??rotor system [J]. Acta Aeronautica et Astronautica Sinica, 2003, 24(6): 541??545.
[14]  [5]张剀, 赵雷, 赵鸿宾. 磁轴承飞轮控制系统设计中LQR方法的应用研究 [J]. 机械工程学报, 2004, 40(2): 127??131.
[15]  ZHANG Kai, ZHAO Lei, ZHAO Hongbin. Study on the application of LQR method in the design of magnetic bearing flywheel control system [J]. Journal of Mechanical Engineering, 2004, 40(2): 127??131.
[16]  FANG Peng, JIANG Kejian. Modeling and simulation analysis of controlling distribution of critical speed of flexible rotor with electromagnetic bearing [J]. Journal of Zhejiang Sci??Tech University (Natural Sciences), 2014, 31(3): 221??227.
[17]  [8]HUGHES T J R, COTTRELL J A, BAZILEVS Y. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement [J]. Computer Methods in Applied Mechanics and Engineering, 2005, 194(39): 4135??4195.
[18]  [9]尹硕辉, 余天堂, 刘鹏. 基于等几何有限元法的功能梯度板自由振动分析 [J]. 振动与冲击, 2013, 32(24): 180??186.
[19]  [6]方鹏, 蒋科坚. 采用电磁轴承控制柔性转子临界转速分布的建模和仿真分析 [J]. 浙江理工大学学报(自然科学), 2014, 31(3): 221??227.
[20]  [10]陈德祥, 徐自力, 刘石, 等. 求解Stokes方程的最小二乘等几何分析方法 [J]. 西安交通大学学报, 2013, 47(5): 51??55.
[21]  CHEN Dexiang, XU Zili, LU Shi, et al. Least squares isogeometric analysis for Stokes equation [J]. Journal of Xi’an Jiaotong University, 2013, 47(5): 51??55.
[22]  [11]陈德祥, 徐自力. 多重网格在黏性流动最小二乘等几何模拟中的应用 [J]. 西安交通大学学报, 2014, 48(11): 122??127.
[23]  CHEN Dexiang, XU Zili. An application of multigrid in viscous flow simulations with least squares isogeometric method [J]. Journal of Xi’an Jiaotong University, 2014, 48(11): 122??127.
[24]  [12]COTTRELL J A, HUGHES T J R, BAZILEVS Y. Isogeometric analysis: toward integration of CAD and FEA [M]. Hoboken, NJ, USA: John Wiley & Sons, 2009: 164??165.
[25]  MENG Guang. Review and prospect of the research on rotor dynamics [J]. Journal of Vibration Engineering, 2002, 15(1): 1??2.
[26]  [7]MUSHI S E, LIN Zhongli, ALLAIRE P E. Design, construction, and modeling of a flexible rotor active magnetic bearing test rig [J]. IEEE/ASME Transactions on Mechatronics, 2012, 17(6): 1170??1182.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133