|
- 2016
烟气脱硝用尿素水解制氨工艺试验研究
|
Abstract:
为了掌握烟气脱硝用尿素水解制氨工艺的放大规律,通过建立中试装置来模拟工业反应器的传递过程,对尿素水解工艺开展了中试及工业化放大试验研究。结果表明,尿素溶液在一定温度、压力下发生水解反应生成氨气、二氧化碳和水蒸气的混合气,气液相平衡可采用修正的Lewis??Randall方程和Herry方程分别描述。当操作温度为150℃时,反应?怖┥⒆荚蚴?M为0.036,表明尿素水解制氨为液相慢反应,本征反应速率远小于氨气扩散速率,反应器的产氨速率由动力学控制,可简化为温度和反应平衡常数的函数;水解反应器内加热蒸汽发生冷凝换热,液相区则产生泡核沸腾;根据中试试验数据建立的表观动力学模型,可用于指导工业反应器的结构设计。该研究将为烟气脱硝用尿素水解制氨工艺开发及反应器放大设计提供重要参考。
In this research a pilot plant was established to simulate the transfer process in industrial reactor, and then preproduction and industrial tests were carried out. The results indicated that the urea solution was hydrolyzed to a mixture of ammonia, carbon dioxide and water vapor at certain temperature and pressure. The modified Lewis??Randall equation and Herry equation were adopted to describe the phase equilibrium between the vapor and liquid phases. When the operating temperature was 150℃, the reaction??diffusion criterion number M was 0??036, which indicated that the urea hydrolysis in liquid was a slow reaction and the intrinsic reaction rate was much lower than the diffusion rate of ammonia. The ammonia production rate of the reactor was dominated by dynamics and could be simplified as a function of temperature and reaction equilibrium constant. In the tank reactor, the heating steam condensed in the pipe while the nucleate boiling occurred in the liquid region. The ammonia production rates of the industrial hydrolysis reactor agreed well with the theoretical values deduced from the apparent dynamic model, and satisfied the ammonia consumption requirement for flue gas denitration in the selective catalytic reduction. This study would provide a reference to the design and development of urea hydrolysis for flue gas denitration
[1] | [3]ISLA M A, IRAZOQUI H A, GENOUD C M. Simulation of a urea synthesis reactor: 1Thermodynamic framework [J]. Industrial & Engineering Chemistry Research, 1993, 32(11): 2662??2670. |
[2] | [4]KOTULA E. A vapour??liquid equilibrium model of the NH3??CO2??H2O??urea system at elevated pressure [J]. Journal of Chemical Technology and Biotechnology, 1981, 31(1): 103??110. |
[3] | ZHANG Xiangping, SUN Li, YAO Pingjing, et al. New approach to calculate the VLE of NH3??CO2??H2O??(NH2)2CO system with extended UNIQUAC equation [J]. Journal of Chemical Engineering of Chinese Universities, 2002, 16(4): 355??360. |
[4] | [13]许越. 化学反应动力学 [M]. 北京: 化学工业出版社, 2004: 12??16. |
[5] | [15]刘杨先, 潘剑锋, 刘勇. UV/H2O2氧化联合CaO吸收脱除NO的传质?卜从Χ?力学 [J]. 化工学报, 2013, 64(3): 1062??1068. |
[6] | WEI Shun’an, YANG Nan, FU Xuemei, et al. Vapor??liquid equilibrium of urea solution separation system [J]. Chemical Engineering, 2011, 39(11): 83??87. |
[7] | [18]RAHIMPUR M R. A non??ideal rate??based model for industrial urea thermal hydrolyser [J]. Chem Eng Process, 2004, 43(10): 1229??1307. |
[8] | [20]高光华, 童景山. 化工热力学 [M]. 北京: 清华大学出版社, 2007: 30??36. |
[9] | XIE Hongyin, XIONG Yuanquan, ZHENG Shouzhong, et al. Experimental investigation on performance of simultaneous removal of SO2 and NOx by aqueous urea/ammonium ion solution [J]. Journal of Xi’an Jiaotong University, 2011, 45(12): 123??128. |
[10] | [12]姚宣, 沈滨, 郑鹏. 烟气脱硝用尿素水解装置性能分析 [J]. 中国电机工程学报, 2013, 33(14): 38??43. |
[11] | [14]SAHU J N, MAHALIK K K, PATWARDHAN A V, et al. Equilibrium studies on hydrolysis of urea in a semi??batch reactor for production of ammonia to reduce hazardous pollutants from flue gases [J]. Journal of Hazardous Materials, 2009, 164(2): 659??664. |
[12] | LIU Yangxian, PAN Jianfeng, LIU Yong. Mass transfer??reaction kinetics for NO removal by combination process of UV/H2O2 oxidation and CaO absorption [J]. CIESC Journal, 2013, 64(3): 1062??1068. |
[13] | [16]丁红蕾. 氨基湿法烟气脱硫的机理及工业试验研究 [D]. 杭州: 浙江大学, 2010. |
[14] | [17]魏顺安, 杨楠, 付雪梅, 等. 尿素溶液分离体系的汽液平衡 [J]. 化学工程, 2011, 39(11): 83??87. |
[15] | L?a Hongkun, YANG Weijuan, ZHOU Junhu, et al. Investigation on thermal decomposition characteristics of urea solution under high temperature [J]. Proceedings of the CSEE, 2010, 30(17): 35??40. |
[16] | [2]谢红银, 熊源泉, 郑守忠, 等. 尿素/铵根溶液湿法同时脱硫脱硝特性实验研究 [J]. 西安交通大学学报, 2011, 45(12): 123??128. |
[17] | YAO Xuan, SHEN Bin, ZHENG Peng. Characteristics of urea hydrolysis equipment for flue gas denitration [J]. Proceeding of the CSEE, 2013, 33(14): 38??43. |
[18] | [1]吕洪坤, 杨卫娟, 周俊虎, 等. 尿素溶液高温热分解特性的实验研究 [J]. 中国电机工程学报, 2010, 30(17): 35??40. |
[19] | [5]张香平, 孙力, 姚平经, 等. 扩展UNIQUAC方程求NH3??CO2??H2O??(NH2)2CO体系液相活度系数的新方法 [J]. 高校化学工程学报, 2002, 16(4): 355??360. |
[20] | [6]沈华民. 尿素合成的化工计算: 热力学模型篇 [J]. 中氮肥, 2008(5): 1??6. |
[21] | SHEN Huamin. Chemical engineering calculation on urea synthesis: section of thermodynamic model [J]. M??Sized Nitrogenous Fertilizer Progress, 2008(5): 1??6. |
[22] | [7]沈华民. 尿素合成的化工计算: 动力学模型篇 [J]. 中氮肥, 2008(6): 10??13. |
[23] | SHEN Huamin. Chemical engineering calculation on urea synthesis: section of dynamic model [J]. M??Sized Nitrogenous Fertilizer Progress, 2008(6): 10??13. |
[24] | [8]MAHALIK K, SAHU J N, PATWARDHAN A V, et al. Kinetic studies on hydrolysis of urea in a semi??batch reactor at atmospheric pressure for safe use of ammonia in a power plant for flue gas conditioning [J]. Journal of Hazardous Materials, 2010, 175(1): 629??637. |
[25] | [9]SAHU J N, GANGADHARAN P, PATWARDHAN A V, et al. Catalytic hydrolysis of urea with fly ash for generation of ammonia in a batch reactor for flue gas conditioning and NOx reduction [J]. Industrial & Engineering Chemistry Research, 2008, 48(2): 727??734. |
[26] | [10]SAHU J N, CHAVA V S R K, HUSSAIN S, et al. Optimization of ammonia production from urea in continuous process using ASPEN Plus and computational fluid dynamics study of the reactor used for hydrolysis process [J]. Journal of Industrial and Engineering Chemistry, 2010, 16(4): 577??586. |
[27] | [11]MAHALIK K, SAHU J N, PATWARDHAN A V, et al. Statistical modeling and optimization of hydrolysis of urea to generate ammonia for flue gas conditioning [J]. Journal of Hazardous Materials, 2010, 182(1): 603??610. |
[28] | [19]中国石化集团上海工程有限公司. 化工工艺设计手册 [M]. 北京: 化学工业出版社, 2003: 6??10. |