全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

基于超临界CO2布雷顿循环的 塔式太阳能集热发电系统
A Towered Solar Thermal Power Plant Based on Supercritical CO2 Brayton Cycle

DOI: 10.7652/xjtuxb201605016

Keywords: 超临界CO2布雷顿循环,太阳能热发电,吸热器,底循环,余热利用
supercritical CO2 Brayton cycle
,solar thermal power,heat receiver,bottoming cycle,low??temperature waste heat recovery

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了提高太阳能热发电系统的性能,建立了以熔融盐为传热介质、再压缩式超临界CO2布雷顿(SCO2)循环为动力循环的塔式太阳能集热发电系统的分析模型,分析了定日镜、腔式吸热器、再压缩式SCO2发电系统3个子系统的性能,并研究了太阳辐射强度和采用不同底循环的SCO2发电系统对整个电站性能的影响,最后对采用不同类型的蒸汽动力循环和SCO2循环为动力子系统的5种塔式太阳能集热发电系统进行了对比。结果显示:吸热器的能量损失率最小,但损失率最大;随着太阳辐射强度增大,吸热器和整个电站的热效率和效率均增大;采用有机朗肯循环和跨临CO2(TCO2)循环作为底循环对SCO2发电系统进行余热回收,可提高整个电站的热效率,并且SCO2??TCO2循环具有更高的热效率;相同条件下,不同的SCO2循环均比蒸汽动力循环具有更高的热效率和效率,其中基于SCO2??TCO2的塔式太阳能电站热效率最高。
A towered solar thermal power plant using a recompression supercritical CO2 Brayton (SCO2) cycle with molten salt as the heat transfer fluid was established to improve the performance of solar thermal power plant. The exergy analysis on the subsystems of the heliostat field, the cavity receiver and the recompression SCO2 power cycle was performed. The effects of direct normal irradiation(DNI) and the type of SCO2 power cycle with different bottoming cycles on the system performance were tested, and the performances of solar power plants using different power cycles of SCO2 and steam power cycles were compared. The results show that: although the heat receiver has a least energy loss, it has the largest exergy loss rate; as DNI increases, the thermal and exergy efficiencies of the receiver and the whole plant increase; and adding a bottoming cycle such as ORC or TCO2 cycle to recover the waste heat of SCO2 power cycle can increase the overall efficiency. Especially, the SCO2??TCO2 cycle can achieve higher thermal efficiency, and various SCO2 cycles can achieve higher thermal and exergy efficiencies compared with steam power cycles under the same conditions. The towered solar thermal power plant using a SCO2??TCO2 cycle has higher cycle efficiency compared with other configurations

References

[1]  [8]许昌, 李?F, 袁媛, 等. 塔式太阳能集热?踩加锰烊黄?燃气轮机复合发电系统建模 [J]. 中国电机工程学报, 2013, 33(32): 62??69.
[2]  XU Chang, LI Min, YUAN Yuan, et al. Modeling research on a solar tower thermal collection??natural gas turbine power system [J]. Proceedings of the CSEE, 2013, 33(32): 62??69.
[3]  [9]徐二树, 余强, 杨志平, 等. 塔式太阳能热发电腔式吸热器动态仿真模型 [J]. 中国电机工程学报, 2010, 30(32): 115??120.
[4]  XU Ershu, YU Qiang, YANG Zhiping, et al. Solar thermal power tower cavity receiver dynamic simulation model [J]. Proceedings of the CSEE, 2010, 30(32): 115??120.
[5]  [10]XU C, WANG Z, LI X, et al. Energy and exergy analysis of solar power tower plants [J]. Applied Thermal Engineering, 2011, 31(17): 3904??3913.
[6]  [11]徐二树, 胡忠良, 翟融融, 等. 塔式太阳能热电站系统仿真与分析 [J]. 中国电机工程学报, 2014, 34(11): 1799??1806.
[7]  XU Ershu, HU Zhongliang, ZHAI Rongrong, et al. Simulation and exergy analysis of solar thermal tower plants [J]. Proceedings of the CSEE, 2014, 34(11): 1799??1806.
[8]  [12]LEMMON E W, HUBER M L, MCLINDEN M O. NIST reference fluid thermodynamic and transport properties: REFPROP, NIST standard reference database 23[DB]. version 9??0. Boulder, USA: National Institute of Standards and Technology, 2010.
[9]  [2]MOISSEYTSEV A, SIENICKI J J. Investigation of alternative layouts for the supercritical carbon dioxide Brayton cycle for a sodium??cooled fast reactor [J]. Nucl Eng Des, 2009, 239: 1362??71.
[10]  ZHANG Zhenxing, WU Linlin. Supercritical CO2 brayton cycles applied to sodium cooled fast reactor [J]. Silicon Valley, 2014, 7(10): 192??193.
[11]  [4]NEISES T, TURCHI C. A comparison of supercritical carbon dioxide power cycle configurations with an emphasis on CSP applications [J]. Energy Procedia, 2014, 49: 1187??1196.
[12]  [5]CHACARTEGUI R, DE ESCALONA J M M, S?BNCHEZ D, et al. Alternative cycles based on carbon dioxide for central receiver solar power plants [J]. Applied Thermal Engineering, 2011, 31(5): 872??879. [6]BESARATI S M, GOSWAMI D Y. Analysis of advanced supercritical carbon dioxide power cycles with a bottoming cycle for concentrating solar power applications [J]. Journal of Solar Energy Engineering, 2014, 136(1): 010904.
[13]  [7]袁建丽, 韩巍, 金红光, 等. 新型塔式太阳能热发电系统集成研究 [J]. 中国电机工程学报, 2010, 30(29): 115??121.
[14]  YUAN Jianli, HAN Wei, JIN Hongguang, et al. Research on system integration of a novel solar tower thermal power plants [J]. Proceedings of the CSEE, 2010, 30(29): 115??121.
[15]  [13]邹琴梅. 塔式太阳能熔融盐吸热器的传热特性研究与设计 [D]. 杭州: 浙江大学, 2014.
[16]  [14]LI X, KONG W, WANG Z, et al. Thermal model and thermodynamic performance of molten salt cavity receiver [J]. Renewable Energy, 2010, 35(5): 981??988.
[17]  [1]WANG Xurong, WU Yi, WANG Jiangfeng, et al. Thermo??economic analysis of a recompression supercritical CO2 cycle combined with a transcritical CO2 cycle [C]∥ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. New York, USA: ASME, 2015: GT2015??42033.
[18]  [3]张振兴, 武林林. 应用于钠冷快堆的超临界二氧化碳布雷顿循环系统 [J]. 硅谷, 2014, 7(10): 192??193.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133