全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

改进的混合动静态背景的分割方法
An Improved Subtraction Algorithm of Backgrounds with Stationary and Non??Stationary Scenes

DOI: 10.7652/xjtuxb201502005

Keywords: 背景分割,图像块分类,颜色直方图特征,混合高斯模型
background subtraction
,image block classification,color histogram feature,mixture of Gaussians

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对动静态背景场景下背景分割虚警率高的问题,提出了一种基于块直方图特征的Zivkovic混合高斯模型改进算法―BHZ??MoG。该算法设计了图像的块观测向量,并根据块观测向量的统计规律将图像块分类为动态、半动态、静态块,由此给出了结合块观测向量与块分类的块直方图特征提取算法,同时结合块直方图特征与Zivkovic混合高斯模型对不同类型的块分别进行背景分割与模型更新。实验结果表明,相较于Zivkovic混合高斯模型,BHZ??MoG算法能够在保证查全率不变的情况下,有效提高背景分割结果的查准率;Zivkovic混合高斯模型及BHZ??MoG的最大F1分数分别为0.758和0.790,说明了BHZ??MoG算法可以获得较佳的前、背景分割效果。另外,BHZ??MoG算法还可有效降低Zivkovic混合高斯模型在动态背景下的虚警率。
An improved algorithm―BHZ??MoG of Zivkovic??mixture of Gaussians (Z??MoG) based on block histogram feature is proposed to solve the problem that the background subtraction has a high false alarm rate in the mixture of stationary and non??stationary scenes. Observation vectors for image blocks are designed and blocks are classified into static, dynamic and half??dynamic blocks according to the statistical regularities of the observation vectors. A method that combines the observation vector and the classified information of a block is presented to extract block histogram feature. Block background models are constructed and updated from the combination of Z??MoG and histogram features. The BHZ??MoG can effectively reduce the high false alarm rate of Z??MoG under dynamic backgrounds. Experimental results show that the precision of the BHZ??MoG is higher than that of Z??MoG while the recall keeps the same. The maximal F1??scores of the Z??MoG is 0.758 and that of the BHZ??MoG is 0.790, and it shows that the proposed algorithm can provide better subtraction results

References

[1]  [3]BARNICH O, VAN DROOGENBROECK M. ViBe: a powerful random technique to estimate the background in video sequences [C]∥Proceedings of the IEEE Conference on Acoustics, Speech and Signal Processing. Piscataway, NJ, USA: IEEE, 2009: 945??948.
[2]  [1]STAUFFER C, GRIMSON W. Adaptive background mixture models for real??time tracking [C]∥Proceed??ings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ, USA: IEEE, 1999: 246??252.
[3]  [2]KIM K, CHALIDABHONGSE T H, HARWOOD D, et al. Real??time foreground background segmentation using codebook model [J]. Real??Time Imaging, 2005, 11: 172??185.
[4]  [7]DALLEY G, MIGDAL J, GRIMSON W. Background subtraction for temporally irregular dynamic textures [C]∥Proceedings of the IEEE Workshop on Applications of Computer Vision. Piscataway, NJ, USA: IEEE, 2008: 1??7.
[5]  [8]ZHAO Zhenjie, THIERRY B, ZHANG Xuebo, et al. A fuzzy background modeling approach for motion detection in dynamic backgrounds [C]∥Proceedings of the Multimedia and Signal Processing Communications in Computer and Information Science. Berlin, Germany: Springer, 2012: 175??178.
[6]  [4]ZIVKOVIC Z. Improved adaptive Gaussian mixture model for background subtraction [C]∥Proceeding of the 17th International Conference on Pattern Recognition. Piscataway, NJ, USA: IEEE, 2004: 28??31.
[7]  [5]MATSUYAMA T, OHYA T, HABE H. Background subtraction for non??stationary scene [C]∥Proceeding of the Asian Conference on Computer Vision. Berlin, Germany: Springer, 2000: 622??667.
[8]  [6]ZHONG J, SCLAROFF S. Segmenting foreground objects from a dynamic textured background via a robust Kalman filter [C]∥Proceedings of the 9th IEEE International Conference on Computer Vision. Piscataway, NJ, USA: IEEE, 2003: 44??50.
[9]  [9]SHIMADA A, NAGAHARA H, TANIGUCHI R. Background modeling based on bidirectional analysis [C]∥Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition. Piscataway, NJ, USA: IEEE, 2013: 1979??1986.
[10]  [10]KIM W J, KIM C. Background subtraction for dynamic texture scenes using fuzzy color histograms [J]. IEEE Signal Processing Letters, 2012, 19(3): 127??130.
[11]  [11]BRUTZER S, H?ZFERLIN B, HEIDEMANN G. Evaluation of background subtraction techniques for video surveillance [C]∥Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition. Piscataway, NJ, USA: IEEE, 2011: 1937??1944.
[12]  [12]GOYETTE N, JODOIN P, PORIKLI F, et al. Changedetection.net: a new change detection benchmark dataset [C]∥Proceedings of the 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. Piscataway, NJ, USA: IEEE, 2012: 16??21.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133