全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

电动汽车的多模式复合电源能量管理自适应优化
Adaptive Optimization of Energy Management Strategy for a Multi??Mode Hybrid Energy Storage System in Electric Vehicles

DOI: 10.7652/xjtuxb201512021

Keywords: 电动汽车,复合电源系统,能量管理,自适应优化
electric vehicle
,hybrid energy storage system,energy management,adaptive optimization

Full-Text   Cite this paper   Add to My Lib

Abstract:

为提高电动汽车的多模式复合电源系统效率,提出一种能量管理自适应优化方法。对多模式复合电源工作模式进行分析,设计超级电容自适应参考电压。建立复合电源系统效率优化目标函数,并结合电池荷电状态和超级电容电压设计电池输出功率补偿规则和能量管理自适应优化方法。搭建多模式复合电源系统仿真模型和测试平台进行测试。测试结果表明:在UDDS和NEDC路况下,与滞环控制相比,采用能量管理自适应优化的多模式复合电源系统效率分别提高1??13%和1??02%。采用能量管理自适应优化的多模式复合电源不仅能自适应选择工作模式和完成电池输出功率补偿,而且避免了电池输出功率突然增大,保证了电池安全。
An adaptive optimization method (ADM) for energy management strategy is proposed to improve the efficiency of the multi??mode hybrid energy storage system (HESS) in electric vehicles. The operating modes of the multi??mode HESS are first analyzed, and an adaptive reference voltage of the ultracapacitor (UC) is defined. The objective of optimization focuses on the efficiency of the overall system. And the compensation rules of the battery power output and the ADM for energy management strategy are designed by combining the battery state of charge(SOC) and the UC voltage. A simulation model and an experimental platform are then established. Compared with the multi??mode HESS with the hysteresis control strategy in the UDDS and the NEDC drive cycles show that the ADM improves the overall system efficiency of the multi??mode HESS up to 1.13% and 1.02%, respectively. The multi??mode HESS with the ADM for energy management strategy can not only achieve the adaptive selection of operating modes and the compensation of the battery power output, but also avoid the excessive power output of the battery, so the battery safety is ensured

References

[1]  [1]WANG Bin, XU Jun, CAO Binggang, et al. A novel multimode hybrid energy storage system and its energy management strategy for electric vehicles [J]. Journal of Power Sources, 2015, 281: 432??443.
[2]  [2]吴海峰, 鲁军勇, 马伟明, 等. 大功率混合储能装置控制策略研究 [J]. 西安交通大学学报, 2015, 49(2): 93??98.
[3]  WU Haifeng, LU Junyong, MA Weiming, et al. Control strategy for high power hybrid energy storage device [J]. Journal of Xi’an Jiaotong University, 2015, 49(2): 93??98.
[4]  [3]曹秉刚, 曹建波, 李军伟, 等. 超级电容在电动车中的应用研究 [J]. 西安交通大学学报, 2008, 42(11): 1317??1322.
[5]  [8]XIANG Changle, WANG Yanzi, HU Sideng, et al. A new topology and control strategy for a hybrid battery??ultracapacitor energy storage system [J]. Energies, 2014, 7(5): 2874??2896.
[6]  [9]SONG Ziyou, LI Jianqiu, HAN Xuebing, et al. Multi??objective optimization of a semi??active battery/supercapacitor energy storage system for electric vehicles [J]. Applied Energy, 2014, 135: 212??224.
[7]  [10]WANG Bin, XU Jun, CAO Binggang, et al. Compound??type hybrid energy storage system and its mode control strategy for electric vehicles [J]. Journal of Power Electronics, 2015, 15(3): 849??859.
[8]  [11]KUPERMAN A, AHARON I, MALKI S, et al. Design of a semiactive battery??ultracapacitor hybrid energy source [J]. IEEE Transactions on Power Electronics, 2013, 28(2): 806??815.
[9]  [16]WAAG W, SAUER D U. Adaptive estimation of the electromotive force of the lithium??ion battery after current interruption for an accurate state??of??charge and capacity determination [J]. Applied Energy, 2013, 111: 416??427.
[10]  CAO Binggang, CAO Jianbo, LI Junwei, et al. Ultracapacitor with applications to electric vehicle [J]. Journal of Xi’an Jiaotong University, 2008, 42(11): 1317??1322.
[11]  [4]CAO Jian, EMADI A. A new battery/ultracapacitor hybrid energy storage system for electric, hybrid, and plug??in hybrid electric vehicles [J]. IEEE Transactions on Power Electronics, 2012, 27(1): 122??132.
[12]  [7]WANG Bin, XU Jun, CAO Binggang. Design of a novel hybrid power for EV [C]∥Proceedings of the 2014 IEEE Conference and Exposition in Transportation Electrification. Piscataway, NJ, USA: IEEE, 2014: 1??5.
[13]  [17]MICHALCZUK M, GRZESIAK L M, UFNALSKI B. A lithium battery and ultracapacitor hybrid energy source for an urban electric vehicle [J]. Electrotechnical Review, 2012, 88: 158??162.
[14]  [13]GARCIA P, TORREGLOSA J P, FERNANDEZ L M, et al. Control strategies for high??power electric vehicles powered by hydrogen fuel cell, battery and supercapacitor [J]. Expert Systems with Applications, 2013, 40(12): 4791??4804.
[15]  [14]SONG Ziyou, HOFMANN H, LI Jianqiu, et al. Energy management strategies comparison for electric vehicles with hybrid energy storage system [J]. Applied Energy, 2014, 134: 321??331.
[16]  [15]WU Lianghong, WANG Yaonan, YUAN Xiaofang, et al. Multiobjective optimization of HEV fuel economy and emissions using the self??adaptive differential evolution algorithm [J]. IEEE Transactions on Vehicular Technology, 2011, 60(6): 2458??2470.
[17]  [5]TIE S F, TAN C W. A review of energy sources and energy management system in electric vehicles [J]. Renewable and Sustainable Energy Reviews, 2013, 20: 82??102.
[18]  [6]LONG Bo, LIM S T, BAI Zhifeng, et al. Energy management and control of electric vehicles, using hybrid power source in regenerative braking operation [J]. Energies, 2014, 7(7): 4300??4315.
[19]  [12]LI Qi, CHEN Weirong, LI Yankun, et al. Energy management strategy for fuel cell/battery/ultracapacitor hybrid vehicle based on fuzzy logic [J]. International Journal of Electrical Power and Energy Systems, 2012, 43(1): 514??525.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133